From 7a189801feafa522ddc6a25ab98dd9c540fd98f5 Mon Sep 17 00:00:00 2001 From: Avaamo Date: Tue, 12 Feb 2019 12:49:49 +0530 Subject: [PATCH] modified loss as tensor --- .DS_Store | Bin 0 -> 6148 bytes pytorch/.DS_Store | Bin 0 -> 6148 bytes pytorch/nlp/evaluate.py | 2 +- pytorch/nlp/train.py | 4 ++-- pytorch/vision/evaluate.py | 2 +- pytorch/vision/train.py | 4 ++-- 6 files changed, 6 insertions(+), 6 deletions(-) create mode 100644 .DS_Store create mode 100644 pytorch/.DS_Store diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..df42280ab6ed80b45aba9f90914f9ce673422be8 GIT binary patch literal 6148 zcmeHKL2J}N6n?W^+oTH;!9#@}26_-=4_nsSYh1UUgi2HF!P+%xLK8_dA)DUU+unTc8?B_u`!8QYbqXP2X%|Q81%9!Wgk`)LWov145M}Gd3%`tt*OI&` zM2ZCE`@yRu8upy~&qP-GNfs59PvzL&O0rN4J7SQ9ed6onA$f^=RqjaKk=(dK)X8f|bWtR;yKV(Hp<#z$>y; zWP3PsxeLiMW)v_A7zL(OKp!1eV@kfE83l|2|BnLleBjt5x*98mbaY@xB>-X_hsn^F zwS;LOP=E*2v6!@nUVD+xo?ckR5-8!*3dDn7mZ?Q>}yh`D(5OnA& hMy|Yy7qF4xIF}BhtFcmuBWUK20LfrFqre|k-~ugtg3ivd>W-X!q)d_x)sfae~|(6?dp(03e#w@`Tf!)FFKu{qE>I**x8k`DVw*NZ-cR3 z1VvcP^FcU!V_MI{VjNNZrPk@X9!9T{(c-9e=c&$$Fv&(Uo1DZW3^{zAWU*ch^gN4m z+fU#eQhL%mYV9qTz21IX_4Yffwp#Z4owj<|d$d}4^6vfa<7dZ{_aByLtMku}Q-Ryh z%5B06_<|K$UV73E-suT#%pVUfJrg|~(#DnjdtX1j@V-6S^u~YiPRAR)iW1W<#ybsW zS*o)Ww3ylLz$qkibNP69)xSBT@oYV#N*@z_Ij`$tsWBlL<@ literal 0 HcmV?d00001 diff --git a/pytorch/nlp/evaluate.py b/pytorch/nlp/evaluate.py index f0b0fe0..beeb501 100644 --- a/pytorch/nlp/evaluate.py +++ b/pytorch/nlp/evaluate.py @@ -51,7 +51,7 @@ def evaluate(model, loss_fn, data_iterator, metrics, params, num_steps): # compute all metrics on this batch summary_batch = {metric: metrics[metric](output_batch, labels_batch) for metric in metrics} - summary_batch['loss'] = loss.data[0] + summary_batch['loss'] = loss.item() summ.append(summary_batch) # compute mean of all metrics in summary diff --git a/pytorch/nlp/train.py b/pytorch/nlp/train.py index 8ef8c54..d5789fe 100644 --- a/pytorch/nlp/train.py +++ b/pytorch/nlp/train.py @@ -69,11 +69,11 @@ def train(model, optimizer, loss_fn, data_iterator, metrics, params, num_steps): # compute all metrics on this batch summary_batch = {metric:metrics[metric](output_batch, labels_batch) for metric in metrics} - summary_batch['loss'] = loss.data[0] + summary_batch['loss'] = loss.item() summ.append(summary_batch) # update the average loss - loss_avg.update(loss.data[0]) + loss_avg.update(loss.item()) t.set_postfix(loss='{:05.3f}'.format(loss_avg())) # compute mean of all metrics in summary diff --git a/pytorch/vision/evaluate.py b/pytorch/vision/evaluate.py index ddd84db..5a850ce 100644 --- a/pytorch/vision/evaluate.py +++ b/pytorch/vision/evaluate.py @@ -56,7 +56,7 @@ def evaluate(model, loss_fn, dataloader, metrics, params): # compute all metrics on this batch summary_batch = {metric: metrics[metric](output_batch, labels_batch) for metric in metrics} - summary_batch['loss'] = loss.data[0] + summary_batch['loss'] = loss.item() summ.append(summary_batch) # compute mean of all metrics in summary diff --git a/pytorch/vision/train.py b/pytorch/vision/train.py index ded5554..2779d4f 100644 --- a/pytorch/vision/train.py +++ b/pytorch/vision/train.py @@ -72,11 +72,11 @@ def train(model, optimizer, loss_fn, dataloader, metrics, params): # compute all metrics on this batch summary_batch = {metric:metrics[metric](output_batch, labels_batch) for metric in metrics} - summary_batch['loss'] = loss.data[0] + summary_batch['loss'] = loss.item() summ.append(summary_batch) # update the average loss - loss_avg.update(loss.data[0]) + loss_avg.update(loss.item()) t.set_postfix(loss='{:05.3f}'.format(loss_avg())) t.update()