WARNING: THIS SITE IS A MIRROR OF GITHUB.COM / IT CANNOT LOGIN OR REGISTER ACCOUNTS / THE CONTENTS ARE PROVIDED AS-IS / THIS SITE ASSUMES NO RESPONSIBILITY FOR ANY DISPLAYED CONTENT OR LINKS / IF YOU FOUND SOMETHING MAY NOT GOOD FOR EVERYONE, CONTACT ADMIN AT ilovescratch@foxmail.com
You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/reference/deploying-scaling-logstash.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -5,7 +5,7 @@ mapped_pages:
5
5
6
6
# Deploying and scaling Logstash [deploying-and-scaling]
7
7
8
-
The Elastic Stack is used for tons of use cases, from operational log and metrics analytics, to enterprise and application search. Making sure your data gets scalably, durably, and securely transported to Elasticsearch is extremely important, especially for mission critical environments.
8
+
The Elastic Stack is used for a great variety of use cases, from operational log and metrics analytics, to enterprise and application search. Making sure your data gets scalably, durably, and securely transported to Elasticsearch is extremely important, especially for mission critical environments.
9
9
10
10
The goal of this document is to highlight the most common architecture patterns for Logstash and how to effectively scale as your deployment grows. The focus will be around the operational log, metrics, and security analytics use cases because they tend to require larger scale deployments. The deploying and scaling recommendations provided here may vary based on your own requirements.
0 commit comments