diff --git a/Images/image_1.png b/Images/image_1.png new file mode 100644 index 00000000..84abd8ee Binary files /dev/null and b/Images/image_1.png differ diff --git a/Images/image_10.png b/Images/image_10.png new file mode 100644 index 00000000..42f39968 Binary files /dev/null and b/Images/image_10.png differ diff --git a/Images/image_2.png b/Images/image_2.png new file mode 100644 index 00000000..569f015f Binary files /dev/null and b/Images/image_2.png differ diff --git a/Images/image_3.png b/Images/image_3.png new file mode 100644 index 00000000..702597d5 Binary files /dev/null and b/Images/image_3.png differ diff --git a/Images/image_4.png b/Images/image_4.png new file mode 100644 index 00000000..9cf93501 Binary files /dev/null and b/Images/image_4.png differ diff --git a/Images/image_5.png b/Images/image_5.png new file mode 100644 index 00000000..ebba30fb Binary files /dev/null and b/Images/image_5.png differ diff --git a/Images/image_6.png b/Images/image_6.png new file mode 100644 index 00000000..711f500f Binary files /dev/null and b/Images/image_6.png differ diff --git a/Images/image_7.png b/Images/image_7.png new file mode 100644 index 00000000..57faeca4 Binary files /dev/null and b/Images/image_7.png differ diff --git a/Images/image_8.png b/Images/image_8.png new file mode 100644 index 00000000..4e4545d5 Binary files /dev/null and b/Images/image_8.png differ diff --git a/Images/image_9.png b/Images/image_9.png new file mode 100644 index 00000000..aba53f91 Binary files /dev/null and b/Images/image_9.png differ diff --git a/Presentation.pptx b/Presentation.pptx new file mode 100644 index 00000000..95bf285b Binary files /dev/null and b/Presentation.pptx differ diff --git a/Report.pdf b/Report.pdf new file mode 100644 index 00000000..3f15bcdb Binary files /dev/null and b/Report.pdf differ diff --git a/code.ipynb b/code.ipynb new file mode 100644 index 00000000..69d75100 --- /dev/null +++ b/code.ipynb @@ -0,0 +1,543 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "94583e30-e2ad-49ca-bb1c-283f61969ce5", + "metadata": {}, + "source": [ + "# **Deep Learning Image Classification with CNN**\n", + "\n", + "**Objective**\n", + "\n", + "The objective of this code is to classify images from the CIFAR-10 dataset using a pre-trained DenseNet121 model. The code includes steps for loading the dataset, preprocessing the data, augmenting the training data, defining the model architecture, training the model, evaluating its performance, and visualizing the results.\n", + "\n", + "**About the Data**\n", + "\n", + "The dataset for this task is the CIFAR-10 dataset, which consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class. \n", + "\n", + "The ten classes are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. \n", + "\n", + "Each image is 32x32 pixels in size with 3 color channels, RGB.\n", + "\n", + "The dataset has been split in the following manner: 50k images for training, 10k images for testing\n", + "\n", + "Reference: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "cd157004-b419-4f27-b79c-32b9ee6dd0d0", + "metadata": {}, + "outputs": [], + "source": [ + "# Imports the necessary libraries\n", + "import os\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from tensorflow.keras.applications import DenseNet121\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.utils import to_categorical\n", + "from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d54aa8cb-3d94-4031-a446-e5eee6c3ff37", + "metadata": {}, + "outputs": [], + "source": [ + "# Loads the CIFAR-10 dataset\n", + "(X_train, y_train), (X_test, y_test) = cifar10.load_data()\n", + "\n", + "# Data Preprocessing\n", + "X_train = X_train / 255.0 # Normalizes pixel values to [0, 1] - this helps the model improve its ability to learn efficiently\n", + "X_test = X_test / 255.0\n", + "y_train_cat = to_categorical(y_train, 10) # One-hot encoding for labels - each label corresponds to a vector with 1 at the index of the class and 0 elsewhere.\n", + "y_test_cat = to_categorical(y_test, 10)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "4e41902d-384c-49b7-b6e2-7c4bf7ac5a4c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwMAAAMmCAYAAACpQ12mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5wlZ3nnDV8VTj6dw0xPzhqNJmkkFECAhMSCwRbGiGCwsYyA1cMCfh2wvWvvs077ef06fWwvH+zHrGwWWBsbMCKDESADymk0mqwJPaEnde4++VR4/9BDXaHVTY8WaZhzft+/7tNXnao6VVfdVdX37/5dThzHMQEAAAAAAADaDvdS7wAAAAAAAADg0oCXAQAAAAAAANoUvAwAAAAAAADQpuBlAAAAAAAAgDYFLwMAAAAAAAC0KXgZAAAAAAAAoE3BywAAAAAAAABtCl4GAAAAAAAAaFPwMgAAAAAAAECb0tIvA2vWrKHNmzfTjh07aOPGjfSmN72JHnzwwUu9W6BN+Nd//Ve65ppraOfOnXTllVfSrbfeSlEU0Zo1a2jv3r3P+533vve99P3vf/8l3lPwk8Ls7CwVi0V673vfu6jlh4eH6e/+7u9e5L3S3HnnnfTRj370eWP/9//9f9M///M/ExHR7/3e79Fv/MZvvJS7Bv4PQf6BVgL34MXjX+odeLH53Oc+R1u3biUioi9+8Yv0hje8gb75zW/S9ddff4n3DLQy586do7vvvpsee+wxWr16NRERPfnkk+Q4zoLf+5//83++FLsHfkL5zGc+Q7t27aLPf/7z9Jd/+ZdULBYXXP6HD2Pvf//7X6I9XJg/+IM/uNS7AP4PQP6BVgH34IujpUcGLG9605voAx/4AP3Zn/0ZlUoles973kNbt26lrVu30u///u8ny+3fv5+uv/562rp1K73zne+kG264gb7yla9cwj0Hlxtnz54l3/epr68v+duuXbuSjujzn/88vfzlL6e1a9fSH/3RHyXL3HzzzUmu3XnnnfS+972Pbr31Vtq8eTPdeeedVK/XX9ofAl5S7rnnHvqt3/oteuUrX0n/8i//QkREn/jEJ+iOO+5IlvnKV75CN998MxER3X333bR//37auXMn3X777URE9Pjjj9ONN95I27dvp+uuu44eeOABInruwa2/v59+93d/l66++mravHkzPf744/T+978/WfbMmTNERBSGIf3Gb/xG0j9+6EMfokajkezD008//bx5udB/bf/sz/6MrrvuOtq1axe94Q1voFOnTv14Dx74Pwb5B1oF3IMvjrZ6GSAietnLXkb79u2jP/zDP6RGo0F79uyhRx55hO6991767Gc/S0REv/iLv0gf+tCHaO/evfTrv/7r9Nhjj13ivQaXGzt27KAbb7yRVq1aRW9+85vpT//0T2lkZCSJT01N0YMPPkiPPvronJjkkUceoS9+8Yu0b98+mpiYoL/6q796qX4CeInZt28fnTp1il7/+tfTXXfdRffcc8+P/M7f/u3f0pYtW2j37t30pS99iRqNBv3cz/0c/d7v/R7t2bOH/uIv/oLuuOMOKpfLREQ0Pj5ON954Iz311FN011130W233UYf+MAHaM+ePXTttdcmD1J/93d/R0888QQ98cQTtHv3bjp69KjKvYvNy3/8x3+kw4cP00MPPURPPvkk/fzP/zx98IMf/D84WuDHDfIPtBK4B18cbfcyEMcxERHdd999dPfdd5PrulQoFOjd73433XfffTQzM0N79+6ld77znUREdM0119D27dsv5S6DyxDXdenzn/88Pfjgg/T617+eHnjgAbrqqqvoyJEjRET0rne9i4iIBgYGaN26dXT8+PHnXc/b3/52KhaL5Hkevec976H77rvvJfsN4KXlnnvuoXe/+93keR698Y1vpGPHjtGBAwcuah2HDh2idDpNr3vd64iI6KabbqLBwUHas2cPEREVi0V64xvfSETP/ZdsxYoVtHPnTiJ6rq87duwYET3XP951112UyWTI93163/vep3LvYvPy3nvvpfvuuy/R7/7Jn/wJnThx4qJ+G3hxQf6BVgL34Iuj5ecMWB577DHaunUrHTlyZI52zHEciuOYHMf5kboyABbD5s2bafPmzfQf/+N/pNe//vX0pS99iYiIstlssozneRQEwaLWh7xsTZrNJn3605+mVCpF//RP/0RERJVKhf7+7/+eduzYQWEYJsvWarV51/PD/svyw79lMpnkb57nzZuHz7eehXLvR+VlHMf0u7/7u/Se97xnweXApQH5B1oV3IMXR1uNDHzxi1+kv/mbv6Ff+7Vfo9e+9rX08Y9/nOI4pnK5TJ/+9Kfptttuo66uLtqyZUvSIT711FP0zDPPXOI9B5cbIyMjiVaWiGhycpKOHz9O69evv6j1fPazn6VyuUxhGNI//MM/0G233fbj3lXwE8AXv/hFWrduHY2MjNDw8DANDw/TAw88QJ/85Cdp9erV9PTTT1OtVqMgCOgf//Efk+91dnbS9PR08nnz5s1Ur9fpO9/5DhERPfjgg3ThwgXatm3bRe3Pa1/7WvrEJz5BjUaDgiCge+65R+Xexebl7bffTh/72MdoYmKCiJ57+Hzqqacuap/AiwfyD7QauAdfHC0/MnDHHXdQJpOhcrlMW7Zsoa997Wt0ww03JJOSfthJvfWtb00mSX3yk5+kX/7lX6Y///M/p6uvvpp27NhBXV1dl/JngMuMIAjoD/7gD+j48eOUz+cpCAL6pV/6JXrTm95Ev/Irv7Lo9bzqVa+in/3Zn6VTp07RDTfcQB/60IdexL0Gl4p77rknGbb+IVu3bqVly5bR6Ogove51r6OtW7fSmjVr6Oqrr04earZv305XXHEFbd26ldatW0df+tKX6POf/zx9+MMfpnK5TNlslj772c9SoVCg0dHRRe/P+9//fjp69Cjt2rWLiJ6bVPfhD384iV9sXv7iL/4ijY+P080330yO41AQBHTXXXfR1Vdfveh9Ai8eyD/QauAefHE48Q9F9CChXC5TPp8nx3Fo//79dPPNN9OhQ4eop6fnUu8aaCPuvPNOuvbaazHRDQAAAHiJaad7cMuPDLwQHnjgAfrIRz6STDb++Mc/jhcBAAAAAADQcmBkAAAAAAAAgDalrSYQAwAAAAAAABi8DAAAAAAAANCm4GUAAAAAAACANgUvAwAAAAAAALQpeBkAAAAAAACgTVm0tai0HJqKIxWbdjjaIB2bCOtJ+wcHD6tY/ejJpF09djBpj504ojfe5DLRbqjXT/Vm0ky5+ud4RS437Q/oomHdg/1JOyhxeXW/rtef7upI2h2DvSrW39GdtFf2DajYyhXLkvbQkrVyr/T+q+Plzhuxlk8LFcRuxTe8r37tu0nbd/Ux9Dw+GvVGXcWOnTietDsKnSpWq1STdtQMk/ahw3vVcr5Y/7nTp1UsbnL+RbE+KzN1ztvB/n4VcyPeXrUyy9sKdP75IqfdVEbFZPH0g8/qa6bYx791ZnYmaadSKbVcOpVO2uPj4yrW1cXraNZ1qfZmk/fT99Mq1tvTl7S/8d17qRW5lCZsC207CPR5chzOSd9/YU7SC21Prv8nlcthHxfDq1bnk/aa5fp+1pHn8+6b05VPi37D0TlQj7k/OFXlfvXVb/mwWm7lFq66GpjHBocaSdt1PBPjfs4xeeSIu1i8wE3LdXk5x9ELuqK7nLN+cSDk11zzjOJG8rPOFZU6Jo9Ctb35r5Hbbrpq3tjlxOEzZfFJ/95ooT4i4lgc6WMv+5ZIxELznBeJ+yWRXYf4nll/FPL37D42xTYa4hmz2Wyo5SK5/2Ydcp+bZp8Dse1QtG0fLT8HzfnXEdn1i++FoV0nP5f85n98Gy2GVnxuBAAAAAAAACwCvAwAAAAAAADQprwgmZAX6aGSsFlJ2qXajIrVAh5ais6fULHpZ/cn7eqZkaRdGZ9SyzVKLOcgO8zUnH8YkoQiIj6npQwzQiYkf49X08MtbppX0kzrd6d8jodtDxTzKrZsaGnSfsUrXpu0V63eoJbzUjys2lBDYUSOy9t2jbzIF+9x9ne7fmsMi0v2PflA0g6qWgqUFlKa4yNn9PeGWYrW162rSPd0dSftC+fOJ+2l/QW1XLXEOR019BCiUMjR6VNnVazm5ZJ2PqfXuXSQpTSzJZYJOZ4+z66Q9aRyORWrlMV1kdL5nc6zxGfzqvVJe2REy5w6OlgGFzl6HQWR09ms3n+Zqva3rVqxilqdl1p6sqBUR0gbPJM/cnjarmO+32D/3ioym8udQo77gunZioplCnwdl819pBbw54K+xCl0+H7aU+B+dN+DX1PLrV57A38npyVKsbjfpPSmyRPSSSvP8YTGJ3D5fhYbqY5UXzqOzmFffM+zEh/51CKkJL5n7peukR7LdThq4yoWxvN/rxXxPCmX0TFnAdXkQlIrJd0R7dgxx1ZswKQ3xSJBHKM3c8X2HCNtil3xrOfJPDVSbvG10GxcKn7m9NHioyuvA9/so9iea1bhipUENt/EapzIXDPuxffZGBkAAAAAAACgTcHLAAAAAAAAAG0KXgYAAAAAAABoUxY9Z0C+NWQ9rZuaPM1zAZ54+nEVm5gYS9ozM2UVKw/zPIHxC6NJu1bSesjaTIk/GM2ZtB2z9kphxJ9TGS2WbMyy7jwj9NZhXevRw5h/q5w/QESUK7CmeszXOrORYdZmj17g/b/p5pvVcoMreO7CdLWkYgMDQ0m7t9inYp7LdnHunHe61tP4fu/f/z1p531tsVlI83k4cfa8is0Ivez2K7eq2OgFXrZa4WN/+vS0Wi6b4fNeNrk50M+Wsr1LluudzhaTZrGzW4UyeY51i3VIO08iop5ePu9BaDSP4rxffcPLVazcYGuxTjE3YuvOBWzNjOXZ6Dhfk53CRve5/eT5F42G/l7W1ddJK7KQ/n4hff+ckNTJLmBPKAWoc1cv9Kie0U0LLWlT2OASEflifoEjNdtztNDz9yc/jvkEmJOwOOriOis39D3Yq/K8nVkzr0ner1cOFFXMJc6JDjEfr3Rmj1ru+GP/nLQ33XyHis2EvG17KuV8tpQRlqdc3i/fkX2Ivce7z9sm0nPn5s5JEOsQ2/Zcfexcq0+Xe6IF7yom5wzYDL50xsMvHp4jNf06tuCcJjktYE5+iD8sdNDk96wPbTR/Hyo/xyY/UnKegLDE9YxwX1p6zpkbIZc1czXlc1ko9sPObZF9ttX+y12O7cYdNSlBheLo4jMQIwMAAAAAAAC0KXgZAAAAAAAAoE1ZtEwoDNn+8Pjwsyr21JMPJe19Tz+jYhMjLDWYnJhSsXiGhzNnG7IKmx7OlnaOrpHjuB7/BFuhLRKyCr+i5T8zE6LqsLBvDBxrHcX7UshkVSxf4n3OZLR0pZLmfW40+HhVg6parmcpD9tmu7U96arV65L2FWuuVLHl/UKSEltZRoZajTVXbOcPTT0E5kWcE10NnR8r+7s5JuQyRETXXr0jaT97iCtgj5y/oJaT9p6ZUt3E+Fh36tNHhTxbgXaKStZERNkcS9OWrliRtB0r8xDVlm11z3SK89ExMVdUDJaVEVMpncO+tN/Vu085IW0KA31dCEdfcs062+F/DAtJW2ITU0PXc+znnn84NzCSRyfk/iSKTKXykLcXWAlEzHlRmdXyt3SOczeXZ6mHKfBt7BWtLZ77/MstAGRBLwxHyiONheyBEyzHDVI61tfJF3mvkRqmhDynQ+TR2oKWGoWn703a0akBFetf/pqkXTWPFNI2MWWkDGmP761exG3X5Ie0y51jnSt0FEZBRL6IyW7Vs9a5NL8UaKFQIK5dm9JR1Hq2o744iPb3LSRxVMdmoe5PWmUuIBUzzqLqOc9WGZZyGRtTlsxiJ0Nz/5KVpufIMJXMaY4vKC8n98PeHqXMyUjW5Oc5MXEkvFjfL+ZIihZB69+1AQAAAAAAAM8LXgYAAAAAAABoU/AyAAAAAAAAQJuy6DkDp0aGk/bXv/p5FTt4kGPnTo+rWHWWLRvLZW0t2qyyLrEudM2hLUcudFlRTc8nCEJh/Wksp3yhl61XayrmCd+xYpH13JHRWkltnG8s9xxhyxYE+nuZkDXhns/H4OzxU2q52QmhKx/UZd6jKv+2uKp/d2Mdz+FYKixIiYi6vaXikxEAX6YsW7UxaZdL+ly6Dh/r7UOrVayY59/fqOn8i0XOvf51/yFp3/vN76jl7v/Bw0l7ZlZv2xE2mr6nL6eONOdtLq/ncRS7eK7Iy2+6MWl7Zh1Sox2Zcyll/ENLl6rYqTNneBVCqNlo6DyS+m3HiG7ltRCGVgMr98Vcr22gCV/IWtRZwGavaeztIlHevjbN+Tk9ckYt557nfrVU1/OORkOes1EOtNbbE/k5XZpSsWIv29guXc59SE+Ptrft6OT1500eZ9I58Unnz3xzAxY6dmB+3Bzfpyam9PyPmQYf06bRc3eI++BUSedOPs35l6lze9OQngc01Mf3m5GH/lHF1t3QnbRzK7aoWDrFueSae6vv8eesJ/dZL+e6Qvvv6t8WEGulfd/ajorvSX2/6Udj+XkBzbm9qn3ZX1rXR7f1ctqRGvU5Dpjzz5Fwaf5JA3KugZz2FpvjJ1M6tH2ovE8ZS81Y5Msc+1Op4xdtO/dEzqGKzbXlLnBMlJWp2Ed7HUh9vz2KakqCXf8C81nssosBIwMAAAAAAAC0KXgZAAAAAAAAoE1ZtEzo5KnhpH344GEVOzs8kbQvnJtRsWaNrRittVOtJixDZQVMYx/WCOevkqplQnpsJO0Jy1AzPFUTdqVhmWU8hWxOLZcS1YmDQA/iNIQFqrXW8lN8aOviGNCUXkcoZBvyeBAR1YSMamZySsVGx7h67pWbte3ojo0sQcmktPTocmVoYEnSDgd12p45x/nXrOkKwaVZll70dhVU7OCB/Uk7Clj+8ws//3a1nCcs/SamtNSof4AtXitVPQTfW+Chdjel37vrIW8vlWNP0qqRgKTEdZEy45dhk3OpbqxzXZGPKVmle4Fqsq4Zmm1Ecnh+/irXc2QeC1T0bAesLZ6q6FvV1/jZ4ywHeuLBx5L2ySNH1XKDM6JienlKxQ6vXZ+03YK2sM143H+lrPVihffl/DhfNwMDPWq5oeVcBbsrr6+9wUGuoF7o0H0N1D8/XoZFP1d39XmIfL5v5Qr6HlYV958L47p/7CrwPbKvj/vHkrnXBRO8jrUdug888/Rnk/bGFb+mYmlP9LlGAukLa1s3mt8+VD0bmPtsRkgsnMhUZY6k9aKsFmykwPKzzdkFkthRVptW2tR6ye848x8n12qoVEwGF5AJiWM2x6VzAZlNKDbuWnv5aH6ZkJI2qZi5f0lbWrP/srKwPyd3pPWstBa1MiHRNn20jFlLUrnsnO8tcJ+fD4wMAAAAAAAA0KbgZQAAAAAAAIA2BS8DAAAAAAAAtCmLnjNQFpZkUai/VquxNi8MtFYpCFzR1np/h1jP2mzyOoKmtj+UNlO2yrcsB22VyqF41YlsGWmhX/SyYl6AsQ8lsS/WHjKd5u/5vrF9lJpLYYdar2ttd6XCGs5cQ9u5Sf1403xP6pJzvt6vK1ZekbRbZc5Ad5bPV9NNq1hVzAUYnrigYumQj33nCm3BumznzqT96KMPJO2hIW3T+f5f4DkEDz7ypIpNzPA5mpnV79YNcc7SaX2OOjq7k3ZFaHodx9oz8mfX0TkmbSk9872Mz8crEHNuUka3K3WUkdVzhvI6tPvF+2I18uGcgvHthdU1x6LfO7jngIo98D3Op/0nTiTtsKBzfKKL8+fq01r37XewlryU0XkmtcyR6aOaoksJQ47FsbatJKFPb3ZpPXppejhpr9+0TsUKHUXxSeSI0WG3nrr6xaEqdPWBuR7F6aOopu+z2Qwv29nVq2K5LOfHTMzfOz2j1+GOcbLs2q7nNRV8nt9SHtPW2V2rBpP2ZGVWxc4K+9xKQ2i7bX8irp/IPAB0pXjOQ7/KN6L+Dp4/kxL9XBzreTuRI+cTGMQfQrPtcoXnTkh78ue2wdtbTq2BfISKrc36QnMkRHcYR3ZygQxKG9c5Jpu8LUffX6Tl6dz5asKe3fq/yvMp5xbYh0zxW+3P9MVBCcP55wLIL7qRnXAhdmMB29E595X5tvU8yy4GjAwAAAAAAADQpuBlAAAAAAAAgDZl0TKho0d5KLA0q2U86RRbI3Z0pFSsTGzbWTXWi00hwQlFOVVbfa7R5GFCaw+Vz/O2Uyn9c6SFWBjqoaVCgaUlcp1j57XMpKeDKyhmzBB8KiWrz5oh+CavU1qGRpEefs1keB2OGSKSa6xltISolGEL12CJlhAFoT7OrUBTDCPXmlomsXqIrRD9qKRiGY/PWclUYB0b42UrdT5HTzzxhFpuoJ9tTbdv2ahi93+P5UVhTQ+DT0zw9rqpW8UKBR6u7xvgmGskFLEYegzqevjST3NOeGZ4tK+Xh8yboirtyBld2dYT0hHH2BXqYp9m2DGWw/o6p8m7+CHKyx3Zh9gh27HTfMy/9b0fqNhMVVRJd/j450hf77M+H+/JrO5rei6cS9qVQW0L6rpCwunqvtmRUkZxyqoV3VeeP8fnN2xomUl3gffl2KEjKrZ2M18r2Sz307ZUpy+qwc8RGyyQSu1WubgacL/ueDo/auJ69FNaYjYjLGTLdZ0D6QyfvzHRrRY9fa/zPc6BkrG5Lom83f31f1Wxt35wZ9JuhHq/Uulu/iD6tjOVcbVcV5F/6/HDB1Xs1ImRpB1M6v5355q1SXvdGpZ+zpFpCLlyao79JFtAjzcmVOz4EbZYX7lqrYp197E8asstr6VWIBbPLo4TLLCkaz7Jz/Nbi0pJjGNkSFKWZC3qlVzGeGxGC1Q/JhLPTUIiR1YCJb7nGomS786/z464D7pC9mSrNYcxPwf7C6iobO8o5bnunP/rN+liwcgAAAAAAAAAbQpeBgAAAAAAAGhTFl+B+OTppF2aralYQ7gJVcpaplGr8Yx7OwO9WuNl5WiI4+ohyliMu3vGDcVxeZgz7ethyKjO++ma4SNHuBc1RTXijK+HUX0hBUqb4ddMhj9LmZMlEsOS0jWJSFdXTDeNI5E4roGpThyLIf5G3cqE9OdWYOTCZNLu7+lTsYnznJuHD2i3n0qJj2GhmFex17zm1Um7q5flYMNHjqvl9jyzN2m/+tWvVrFtV21K2k88tVvFCmvYvciY/dDLr9vJy4mKoaFx3ErJCrIpIxWbFbIB0rmTynHOSdeLlau1o1IghlzPn9PD8+fPiMrOTevSIKqCGl1MHNhlWx/Zf7lmOPf44WNJe8z0nW6O3b6aEQ/tZoySQaocx3I6D1afY6lEWNPrj7Ii8Rp6DLoppEdS5uTZcqI1/jw+oaUSAfF102wY+eizJ5P2qivYaSiT1v1orLYHp6H5kJIeY7hHripVqu8x8vjOmkrlPd1FsRzf6ybrU2q5wko+Z2XTl+WWXJW0r77mp1XsdFO6uei87e3gvujgMa4Gf/Cklpu9/hU3Ju3unS/T61jN1bf3PvSYiu05+mzSfvzJ+5P2y1/9OrVcPTWQtN2G7n9z4kI8PHJexQJxLbvnplSsEuhq962ArLDrGCmo7D8c8z/mWOTjXKceKcGRGzCVhIW0xqiplaOkrS4t3fjmbFst9/zVgp/bRbGPRsIehjJf9Prlo6qUqcfGbS8WEqXYNY6B4jhbeZR0t7LSoxdSABsjAwAAAAAAALQpeBkAAAAAAACgTcHLAAAAAAAAAG3KoucMSKNLJ9LvEL6wFvONdtn3WIdYj7TuvSF09qHUnIVa8BRJPaTRJ09PssXmlLEP9ULWUXUUdXVCKXlzxVyGrk5dSbCzmz9bzbnUi1VrWovZCKQd6vy2b7ISsrTPJCLyXBaGNpqmaqLHy6aLep5D013I9uvyZHKKtcodea3HHBzkOQSbNm5SseosH7dCUVdPXT7ElqGb1q9J2t8oaevScpk/z8zMqNiqVfy9nt5+FQulXtFoGbt7OK/yeWERavTaci6KnTMQBpwfjqlO3NElLXH5e7NmTs/wKa4YevToMRXzfXHNmDk3cq6L3bbf5v9jiM28oPNnOXezndr6MxS2hiT6ykKjrJaLylO8vlivf9ss9z29o1rTP7uc51/5Zs5WQ2h5IzFvKm36slml69XndmKG92toUOd/+cLY865/3c6r1HKplOzfVajt7EMXoq+Pte2nzkypWDrm+4gT63kjvs/nWc7vIyI6dpT7syWrupN209eTEs7U+DwsW7JBxbbecEfSvtC5RcV2H+D5LOWytrxe2882tQ899m3e9oTuY2f7eG5BZrWuDp8Vc/xqDd1vhzH3dbOjw7zcpNb+j4n7Qhjpe2mxwcc1k1upYrl+7sObjv7e2Li+X7cC0hHYXpXzm33qhc1thJQMXvVP81uQujYmbUfNfkn5f2yeD+XcGrlbc6spyzmf+rqIxD3Y2t7Le6Q8draKdkpYKzeMTbe4rClqmmcDMa+i2TTfCy7+GbC979oAAAAAAAC0MXgZAAAAAAAAoE1ZtExozZplSbs6qaUGY2enkvbMlKmuJmwGrbOTK6xAK8L+0A7S2CEQHRNSCRPLC0lOvaGH7dIpljZ0dbDspENYTBIRZYSNn61iXK3ycGylaocohTRI2pXaCrNir4M59qSiwpyxVC0UWLLU09ulYjljPdgSiONZNcc6n2N5gnEko5QY8pue0NaZRw4eSNpbrtrMmwr1cNzAEA/P1+t6mLC/n2UYPb3a8rQilm00jOWjqOY4M8XD4pm0fj8PApZs+L4eZt/7zFNiv3R+S4nP6TNnk/aoOQa9A7zP2YyWwdUDPg7ptKlOrIbF9T6n2kHaYUfCRZ41a9bql9ubNmkZ2/Q0n9PxM1xJeGjkWbVc6eiepP1st7aHHRMWypvEOoiI9nZy3+b4+hzKytQq50312UB03IGRsfliWHs6p9c/I2QbpUc57zpNfzW4ZgWvz7e3JD6utrJzG2SZYlbaxrr6mnOqfB56TIXqjcJ+c8lSfezTwl62VGdZVz7SMrWh1Vck7Wuvf6OK+QWWDY0cmVKx1DRbQo+e0Tl9bh/nRGNqmNdnpDpP7uYq76P79e9eJ2SaU8e1JemSHP+21d18HSybmVbL1Wq8j7Npff+vVjnL8l362JVEX11tGMvwsPX+zypvTbLvINJyPsfIZeSFa+3lrV0mr8NYZQoB0NwivRzzTCwSC/vWMtR5fnmilSbKZ0zfXHe1KvffVv6TFhbKU5OcY9KunoioKSQ9k2Wdm6UqP2tPTU3pWIlj589r6dvsFFfjvvOd76bF0HoZCwAAAAAAAFgUeBkAAAAAAACgTcHLAAAAAAAAAG3KoucMXHHlqqQd1rSesCH0/lbyKUsm1+taSxsJDb7nsdoraBpdWST193oD6nM8vybM6k39NOu2/Axru6w9VEPMNbAxtT6j6feEhljuo/ydRFqf5nlGSyYsChtVrdELqqxjK0/Oqlh9VmjqW2T6gKzSLXX0REQjI6yJ//a3vqNiOTFfY9MV2hIvK7R7GbFcs6HnBRw9Mpy0+/oGVWxykjV+3/v+gyq2/epdSXvfvr0qtmwZr0fOgcjndR4FQnftGJX0QB/rWysVPSdheJj1v00xn2Dd2nVquaawx62YeQfymBtHSQqk3tzM00hnWiTpFsD2BfLcVMt6Tksqzwdy9aoBFRu9wFag5/PcD+Vqeh1Twlp0bFrHhn22Rrx2Wuv96bSw0+3WtsnNBl9HXpaX6+zTuulsd3fSTps5VV4XrzMytsxlj68jV8wda0xpXWz5Am+70Kfn3ci+2bHdrxUItzizYm6IE+t5dOsH2Cb57rf8nIpt28Z6/55+bW3b2806+Olx7kcbE3ruSV7M74tCrZ1vCmvb61b1qtgNEc9dmunW/eq5w5wH9WU8b6SyRM+JOX6B51Q98cw+vY79PA/hyl6df9kqr39I2Jqmjuq5Cyuv4mvydFpbf88IO8eqsVRviHtGmNPf8+OLcG2/TIibor8wk/PksxzF9sIUx832m+LmIUNz/kutljMWm+L50DEPenI9Tz/1pIoVhKX3pg38bBAYW84LQo8fRnpuyJFneZ7KmbNnVKyrk6+T8XGeHzNb0s9r8tg1m3pe4PQk3x+mp3W/KecaBMbylNyLzz+MDAAAAAAAANCm4GUAAAAAAACANmXx1qJreRhv+sKoih3YfThpFwq60u9sieUEk8bSS8p/0sIGVNp+EmlbzWrF2Erm2Q7RSnDkuFNgrLCmRCXZcoWHbXr69DBqtxhGTZshRFlhLpXWEh9PSIOklZTdx3KZJVYNI/WIYyk90LGZ8amkXTeygdjIXFqB/gEefpYSKSJtX5tOa3vMTZt4+C9l8ioS78KBsFbs6NDD4EvFEPbVQvpDRHTuLA+nP7NHS4HkaGNkhhdPnTidtKemeAgxb+wZly5h2YTn6Xf3qemppF0x18WKZVwt88puPnZDK5ap5WZE/l0YH1OxE6e5emi9oYdOHeHZFtmKkFHr5d9c5q+5GVX0UG9vifua1F6dI93THNtW537IyZuK6aLq64yxhx0QQ+gZI/XaLPpq4zhJbpqHyVOi+rk3qyvAyqF8J9T9kCMkouGsHv6mLv4N6Z5u/nugJQbV43wt1Mp6/3MrWU7nZbUEKhY6oXawGfXEeRjK6H7iV9725qR97eBqFUvP8LU7WNRHKjjK0iBv5ELSTk3pHGgGfN7zS7RMszjA56xx+hkVmz3EMorg0GEVG5DPEWnu555criVKP/XTP5O077xG97/HjnDuTBv56IkDLAsZ6OT15/M6j3LLOE/XL9P943lRsfmkqYx8ZoKv84arL67Y19XuW4JA9utGUio/WGdRZQtqguI+EkfzS4GknDo0zzdSym3vUylhlz09qe9vY+c5X1Yt48rWT+1+Si03I/ro4eFhFZsUdp+Twj6UiKhPSB7l/bletzbjov82vzsv7vm9S3VuymfHrk4t3yzVL74CNkYGAAAAAAAAaFPwMgAAAAAAAECbgpcBAAAAAAAA2pRFzxnoKLImKYq1/rkhdFpNU5Zbar9cU+ZZyseklr6zs2fe5WpGGy11/J1dWjcVCtvE0ozW+9VrrPcLhYR11uhepU67q6vbbJvnAjimTLXUUTebvB9WC+cLe7LA03o3+cObda2TmxV2oqNntMayJOwuaTm1BBcusL1XUNfHKWyyJn7Zcq2XHVjCen8/pfPPS7FmOp1jW7rVxn5TWuJ+5ctfUTFpGRYGOvd/8L3vJ+0rrtikYrt27UzaZ06f4vYpPR9n+NixpF2p6NzM5lj7euutr1Gxri6251sitIb5joJabonLtnobr1irYqtP8/cefOhhFXOEZjk2dm7Nms3j1iM2fZnsa6ojujR871nWkqaN3jUlbOs6xBwQ36jgmz18PtektR7ZmxFzCIz9Ic1yX1ALtY60KazvvFDMfzJesX5WzOfq0HNyHNF/kbkv+CnOzyDDy0WdOge9Il97zS5tDxltZ1vMzLVXq1i2INazgMa4VegTv/H9r3q5il0Rcx8VHNyvYtkOPqZnjx1QsZKY85QV80YyjtbAdxS5rwwmzqrYyP3DSTu8cFrFIjH3IBXpvOoQc5meIdZR/3+//g213PUNXsefvPdOFVu/pjtpV2a0Fnt1ZmfS7hTzmDrN3JNZ8VMnpiZUbFMHrz/YskbFzoSc0/cfPKRi58rafr0VqFdKSdtxdD+m50LqPigWuWTnDMjnIXnFxqHOlUDYbzbMvICx8zzX5fyYnhfgCIvNsKHnlJw9zbn62KOPJO1DZm6LnJMg+3kiopR4PlyzaqWKDfTzvfXsOb5mrEN9SViNZky/NSvsROVzJBHRxISco6C/N2nnby0CjAwAAAAAAADQpuBlAAAAAAAAgDZl0TKhlMtD05OTejguEEPMoRkDqdaFHMfIKFzxLuIEPMzRrGprvlgMWw/0dqvY4CBbz+VyuvLphLB9qhlpiSds9TIO71fNVP4cHeN1VI38oUMMv+YKevi8IYaTZIW5bEoPUbqiUrHj6mMn7SjDWFuXloQN6XSppGLlqv4NrcCEsAU7duiYivV28XDcWiPxGZvkIeZ8XufHkmV8LuTI44EDepiwKqwirfygKSr/WUvSCZE7589qKVejxkOPnsOXYa2ih1/TQo6zZvV6Fdu+fUvSlhaqREQzs7zPsZAQkMmjyUnex2pNX3cNce2+4npt6ZfPc+5Xyvp7Fy7oofaWxKhQKiW+5qbOa5mQu5a1esVeXaF18qk9STs+ydd/2lQ0D2eE/XFT247Wspwztp9LhaJfNf3XxFq2vvOXsgzJMxbQ8Shfe4Wzehi+2BByCEf377JEsOMIqaRjfpuoWB2bCvPuieGk3bNey9gy8nqOzAkR/+ZqFcnQUMjHc4err2P/EEuD/NBU0T3Lx35mRp8/V9wjhbs3lc25LDXFATVSCV9YevYaGZy65ff2q1h6/cak/W1R5T2/cYVa7sHHdiftc7+g73WbVnUn7eyMls81pvieLKvWl5paLuI0+fmi9uxRFVu5clXSjkk/9wyt5HvN0E26f7z34d3UatTKfOwzOfN/5HiBCsSukPxYpbh4XpQWm5GRKkoL7wP7D6pYpcrn88KYtl0OxCNVFOnnq6DJ9+BDB1g+VzHPn0q+pHefSkKOM2MqBJ87y9IgaQMq7fCJiIaGuO+1MvLOfr5mqma/VnXx80YqpfsDI7RfFBgZAAAAAAAAoE3BywAAAAAAAABtCl4GAAAAAAAAaFMWPWcgl+1O2j3dWvvnp/idwk9b6yjWEOZyenOR0LNKqVTK08Kycpm1eh0FrbnNpHidvqu/lxb600JR62x7e3g95Sm2c6zXtC6w2WQtXKVi5koEQtdmypFnhIWjI7Rqnnn/agjbymZTrz+d4nUaVzZl1xUaIZu04WoV1q5my9CxsxdUzPf5WPSKEuBERPUGH1PH6LCjmM9FTVi3po3+Ls6Ygy+QdrnW+ktabpbLeh7HkaNHkva117Le9MYbr1fLDS7l+RCdnTqHc1nez6qZ61KpsO3YoSOsgx0d19alp8+MJO3v/+B7etv9fI28//3/UcWWbV2StLNpfVwLRW3x24pYHXp9YippTx8fVrGlW3iuh7dW66HzYp5TvIXngOSaOue8U3ye3FPa2tE/cTJph+dOqlgkuqWqr/c5uIa3V7ye8652QV9f48eOJ+3RA9pCcWj300n7pLCAJCI625B9Im/bM9aO5SnO1XxN67lfVmR9rTer9eLFGl+zflrr5CWtMWOAqE9YWZcOHVGxTnETKJv7QeSxNjprdO85YRGZEdaLYaT7MidmPb5Lxj6cuO8pm38v5oqc79392va51s19yEz/VNLesmSzWu7wg48n7YNPPKlivetZb+2Y+VB9m7cm7UYsrH9Drb12xT1+w4ZBFYuExWU91v1cvcoa8SWrVqnYliU6x1uBBx5he+lXvOJGFcuKe5HV1WuMJbN4sJHPgKWSvp81xeST3j79/DkoJrssHVqmYo6wPA3Nc5FcZ03M4Zs2NvSheH6zFttT07zs9Ky2kw0izpe6eL5YPqTnLl67kq+RIK0voEAclG5zzwmC+S3ro0Bfv4sBIwMAAAAAAAC0KXgZAAAAAAAAoE1ZtEwom2X5xXXX6yGiJx55ImmfPaOHsDu7xPCisUMLhO+TK2QvAwNL1HKlEg+/pM1wsLRbOnJU24JVhc3Z0HI9PJ/2+T3onJBw1M3wiisqzHkpI4foYNlG2gx9x2L4Sw3n2Op8YngnDLQ0IPJEhWNjx+eI9eTzuqJnd88LMZb6ySYrcmf1aj0kSw4fi+1XX6FCB/exZdjoqLa8LM1yTs/MTIi/a4uw0QtjYjk9hDglrPk6RbVKIqLpKc6rWlaf92PHnk3a11zLw9nrNuqh9IbIo7OmuuKRI2yxevSYtlv1XR6KPC+qN2eyWs7mpzlvu7u1xGrTJj6W/X16+DwjrsPxcX1cf/DwM0n7zvVvpXYgkkPOZ0dUbPww2z5O9i9VMT8v+hAhLQzyWhKW7uVr2lrTZUVfVhnV267JvifSw+RZce7TBZZ2nXe0lOxEnpcr7rhKxbpP8PYmTkyp2H6R8nlhH9q9WpdFPyetS6t6qP1lwuKyXNKx0gzLhroGde62ijRIMiT6hr0nz6jYMWGtujmj75EdDWEJaSSPdSGjqHlsF9wgfT+LhOQhcHQfmBWOnumivhfVHD7XAyt033YuxffnlStY3hEVu9Vys6Ky6+F/u0/FeqWt6VZd5d3J8701v4b3o6PL2Hs74rOxtGwKad1939bVm7/69QeT9n/7f/6zinU7+jpsBe751P9O2kOr1qjY0DI+f75nrEXFxeg4+j4oZbbS+bNU0xa1scc53b9E96HnRQXikqn8XBOyb3vvnhX9SVXIhFxjbywl2b3m2dTLcV/s5rW0aVbo9SJhGd7Ro9eRF5bkDVPZeUrYuUZG5iSfK13XPFdGC4u1ng+MDAAAAAAAANCm4GUAAAAAAACANmXRMiFZTXLpEj1je4kYtslkjqtYr6g6ODWp5ReecHfxxTDQ1JReTs4Cl7IMIqLJSXaiqNQbKta/hJ0GNqzVQ5SzonLcrJi5ni12qOUKBR7etkMxWeF0kTbVj2dFVeBZ8Xt8M0yW9ln+YqvIkXCjiU2FzUaDj8n0tB7+qlT0UFkrUBHDf55xbqoJF4wDB/ap2L998xtJe/26K/U6K3zeU2Jo8MABPRx86sSppD0+oSsc5sQY+YYNevi5WhNDfOZS6+5ZK9os0dgvKokSEX3vQR6KTvl6/dJxYZUZtpVuNxu6OdY/oN241q7l2Pvf+8sqlhVVus+d0xWUv/a1byXtRx99VMUaJCuBtqZMyMpQag3uexrGFaz6tMinSOdWnBa5nOHr3zPuZ5kulgllegdUjJbysPMpI2XsE/vlGgmkc577zklR4XPk5Am9nPg9HR3aySPs4SHutee0fOl0xNdlIBxoehumgq0Y0S5mdBXZnBjaD+/7vopVXv6ypN01eIPe5xYUCpXH+Xw9a+zlRma5X3JDfQ/bVhT3WV/3naFw0vmOkFHeP63PkSfuP8s7dY596NffzstltFPP499kyeDkYS0/Gw5YEpG9+pVJ+7tP7lbLDQo5btZUOF6a4nwJTmgZ5dH//eWk7QjpVCZn5Mqi7/eNvKIsYo+M6PvquWnO7zNP6H0uxFPUajx7nJ3K/uZ//r2KrRJuSrt26WrM3d3dSTuwMmzxTCUl0/WGeZYTlduXDer+Ly36DHlPJyJqiPXU6vV5Y/IZsGZybHxyij94WoInKxyHjo55wlmzUOS2Y1wvq8KlMp/Vubk0x/2rMQyiUMnPNfWgQRcLRgYAAAAAAABoU/AyAAAAAAAAQJuClwEAAAAAAADalIuYMyBskkKtV4yF7ZhsE+kqvRMTuoLkzAxr8ArSYs9UNO0QlVf7TIVZqb/qNvabV+3YmbRzrt7nUyeGk7YvKthZW6klS3k+hK0iKyv9Wj2anOcg9W+BEXd5OX4fyxjbVNflfQnNMXddXrZc1jrN0VGtnWwFpNawq0tXuB3e+4xYTmvlntm7N2mvWrlBxZYMsl1mTtg1dnZqze2Spbxcv7EwLIo5JnPOkSdOtqttwTZsXJe0C0XW5p98algtt2yI82/79p0qtnw56zSLRmM+OnY6aXdIzW1W67qnxXyWAwcOqtiRQzz/58QJrSOXesso1P9T6F+ibUhbEatJP35yOGl//zE9h+ImURnVuAeTL6tWCw21Z/uaM2yf18jrc/H0Us7Jr504rGI/W+S5Bju7tN4/PsH2lDPjX0/aA3XdT3eI0+vHxsJ2ivuablM5fkemO2mXhOa3N6dzlcQciELD2J+O8FyGY1/XcwYmpR31jdeomJfSfWkrEJ7n++W1XV0qtqOnO2kPkdFlEyedZ25Avph7sDzL/dCVjl4uENbOnd167tITu7kacnpSV692pjiXGmN6LiD1cD9x4Fnua/JCY05EtGSA87t4RM+5qYj5YjVjC5oTvycn5kakpvWcnprom3MVrRcfneHrsOuqnSq2eoCPw1N//48q1tXB52rbez9KrcAvvue9SXtwwPbx4vnQ1dfebJXvFbYKsLxnhiHnbWCWK1fYsr5sKv3mpK271dWLOSDm9kzToqK5rCR87oKe23JhjOfqTJj5rHKumJ/S850aAfeHlSrnXNrT188+cd/NmR+wY+u2pG2ffTOZ+atcx/7F/58fIwMAAAAAAAC0KXgZAAAAAAAAoE25CJkQMzpxXn0+e56Hcpt6dIdmyjyMYqvKzVZ5iK8e8vDIxvXr1HIb1rMNYyqrh6AyHSx7kFXkiIgyosLm8WFdnbhU530pFHgds+VZtVy5xBIc3ww9SxurONbvVSUxlCVHL11PH/JIDGNFTTOEmxISooz+nqzcVzDD7gP9usJdKxCK4ezBAW0ttnwZV5d0zPD2LbfckrR7+7StplynrBidK2ib2HyFh/+aTZ1jtRqf5+PHh1VsfJqHFzs79TkaXMbDrJ6Qxf3UG39KLZcT8rk41jKMMJzfPrEgqlIfO8b7dfiQlnmcGeFreXZGD7+mhZVpKq3lRb19nGNWMjNR1pK5duD4GbafffDUaR3sY3nOiarOn7TPfUpeWIvmTD+RF5bEG2r6PD20h2VD90/rvjkrOp8ty9eq2PgF7rdP7mN5R9pY341FPMRtHC3JDVmqc6Wx/N0qcrd+y2uS9pkBLVdqir5tpRiSJyKqf+ZrSfvfjXX00Gm2wry+qaUxlG49mdCRFN9cO0yl1T7iPms81scp6/P3Oo18oCDOdZeQ1bymw1hli3vpk+d0dd3H7+Oc+2lP97HZHG97MNDbPl3ic7b2ms1Ju17Q8oeRZ55O2mkjH+kWksTc8hUqNin636ro26oVbcU96XB/1WO6rqqQvJxJ6eSvhkKee0Qfk9KAeRBqAa7auiNpu56pJCyvfeOBGYnP1h47LaxFI9G5NJv6WbEm7NLPnNNStFj0cWGgj7tcZ7Wq5dRTM1NJuySe5cbGp9Ryo2Ns2zs5o58Pa6JPSmV09e2qkDzWa5xYo1bG1+RtO6H+3Y88/kTS7uzU8uhcjp9LfCNvzxc49sa3/jwtBowMAAAAAAAA0KbgZQAAAAAAAIA2BS8DAAAAAAAAtCkvyFr0zBmtjzt/gTWDk9NaUzUxxfq8bN5oqoTeStpFrl2/Si2XExrCck2L+urCq8/OVxgdY4uo86LUOhFRJMqrS3vStJkXMDExlbQH+rVW3fdY4zs7q+34yqK8dTrFy7lGVyvfx2xM6titZWYsbFT7B4dUbOPabdRqSBXzxIQ+l1IvZ21pe4WloW902PL4NsRcgIlJvf7de55K2mWj1c0KnW0+r3X15SrnxIYrtF579ZrVSbujqztpO57JATEXZdpcWydP8nV4/NhxFTt9mmNNoV0MAzvPgK+tQl5bo6UzvG1p+0akLTKrFX1MZkvtN2cgFP1JMLhMxWLRzy0hO++Dj6ucjjJqrJCbYrlcSuu5z4qTUejSmu1nhf3csYrOn6PCFvQbF3jOg1Xbp4UdbSGjdauUYYtLx+jRlws7vUqf6PuX6DyLxTwfZ1LnWbrJuXRlpDv4XjHXwDEaZuXQN//UmsuKszH//olZbR9dEZaY+k5B5Iv7W97RByMnPnam+Rh2Z3Vf2SdsE7NNvY5On+2Vp1zTh7h8IrJprSUfqfCeHhXWxdfc8iq1XDjKGvHm/qdVbFZYO3op3Xd2rhVzycTfvZKeM9DRYC15/Zie7zM2y+sfqel7fErMXyiE+qppOsY+twXIiee3TEb3QTKtjLunmkNg7bfnsxN1zXKemFsV+7ofqIu5AM3m/HMGZiraUpbE81tR3IP9jL6PF6UtsplXNyvmhlbMfDC/xtvzRW7Ka4KIqDPLlqGNpp7XEIjjUwp03zg5zc8pdo5FUL/4ezBGBgAAAAAAAGhT8DIAAAAAAABAm3IRMiEebjl5Ug+ljV6YStqzM6ZyphjaiI3llLRG2rhxY9IeGOxRy81M8/qthWcmzUNX5dKUip0/z/KlINDDKI4Y15LynG5T/dAV1ldNs45SiYcNqzU9BOXPIw2y9pAyZlz7qC50A5Grf3ckqn36xjJzupOHnbQw6/JFynGyRo6zchXLyo4cfVbFdu4QdmiOHtoMhezAE+dhbGJcLZcV1rMDprqurAK4es0aFXvftXcn7RtvvEHFBgdFZesSDzWeGjmjlnv2WbYCHRHVWImIqhUeCpQWtURE6RSf+XyO2/WaHmp0iH+3lzIDvC6vP5/VmSSvrdExLVno6NJyunago8BymezyNSrmDx9K2lentZTBFf2EPBc1Ry9Xk/I3T0sxZqo8hH7d1mtVrCpy/NR5fZ4GQz6/W4R1ZN5suyPDkocuY+2cF3aLG0h/T1ZXLj/DlcDplO4Da2XuOw+M6Aqf6Zj3sWmsASOP1+/Okddx22kRmZBX5R9Sc7RF45TH56FijoUrbvMp4w2bEXK0TEPcU2rmfkPcRznmX4heimP3x9oadrDI277SfO9UliVnQmVHWVc/lvT3cH/SzOk+vDrK+VI+/4SKBbI/E5JHK9OQ8rZMXctMZoUkKu3o665ZZ5lGYKV79Rfk2v4TTSieR2LfXOtCqhta/2GBG+vjK2UwTfEMZWUvTVnx3jxDRTJfTBX0SNh4xiavSKxHShUjY63spYTFdkbvf1pU9HZ9nQMpIbstBHz/9M3x6RI5HZL+3bF8KjQdmbT0DoyMN2xYseCPBiMDAAAAAAAAtCl4GQAAAAAAAKBNwcsAAAAAAAAAbcqihW0xsVbqnCkHPTPDWs5KRWuVQmEX5RjNU7+w6uwXJeqnJqfUcnVhkxTGepddoe+KjPXczAxbiAXGlqlYZB1sWpSuz2a1FrMmdGxyjgDR3PLWEt/j9UTiGIRm3kTs8/7XTal13xXWZRmtVyz2skY5tUxrtPd6vA1tcnj50tfH+XH0hLbRXLt+XdLOZbVu7/EnWEd61ZadKpbJ8twUaUG2YeMGtdyWrVuS9hWbNqnYVVu3Jm2ZU0REKaHDnpjQWto9e76TtM+ePZu0Z2a1dVnQ5P1KGV1qVmhuHfNeL+fWuELkm8mm1HIy98nR10gk9IpHjx5Rsfvvvz9pb9++XcW6erXVbTsgLYkbTa0JPRPzcb3K1f1L3uNzWhBa/ZQ5n3LK0Gkzu6ggNNVLlm9UsdFpzrtSWetRr6px/9jXyfOOsq7OkfNCY10zOSL9nJ8KtY74u03O5TP33Ze09awyoklhQVozmuKOPP+2sYr+5h05PuY/Za1FW9FbtIv7fKrpc5lq8u9N1fX8NU/8/oyv758doj8Y6OE+NuXrvswRtqDVhu6jxmc5x/ZM6X7Om+ZtD9t5MJ287Zu6WFP95c9/QS23bQ3372mjVZ/K83l3An1vdcW9Nq7zvbphrp9syPtoXFNpVFgvb1x1pf5eip91SmPfVrHx9ByDzcseqfd3ImM13Zh/bmgU8/GOjF7eEXPdfKHbt/+mlnMka3PssXnh2BibhmH8vG0iotjhfZGRwEx5aAQLPL/JfTRzGeRvCMTx8sychFhcn7Z7jcXxicwxl8/TmbSey+VkL37OCkYGAAAAAAAAaFPwMgAAAAAAAECbsuixhNlZrl554Zy2qGvUeVzF8/QQsyeGllJmKGOJsGksC3lEuaTt5XwxBFzo7FCxKOahulrdVAEW1WK75BAraUtIaXFqLa2q1fntrqTEwlo7NsWwWSSGp2IjlWqKMSnHVB3NChu/rLFU83NChpTSx5wi8Y7XIq97Ug7W0aFz4OGHHk7ay5dricroKFeh/sIX9PDzihUrkvbQENux7ty5Qy235SqWCXnGtk9eF88884yKnTnH27aVET1RDTktrMs6itom1nWkLa2Rjogq1Db/IiFNIUdYqDp6PxoBXyMjI9oyeN+B/Un78GFt2VoQdqsR2d9mq2y3Prm8uD7NUPKzQraxvkPLL9al+HMk+krXHNOc+FgxtnGxkKfFnu5jczmWkg039feuEcP3sq7wTKSXu3eUrXZHTIeSEv29tT+eEXKShpBbps1yaTFM3m1kmsuyvC8rC7oP337FZv4wp3p768k0lgs5ZN1IvorTfM+cmdQy3kaNZbb1mq5MWhf9xFhDSHwaU2q5HiEB607p87e6j/NvxlQxnwo4H8szep3nRcXWaoP3q09UgyUiOvQsSxRHx3T14LKoRlswtpJ9Pudm3pNW32oxygb8hyijH4lOzPJx7pjVsuDBTv5tkwWdt/GAvl+3Ao64BzcDK1nhtpVky2vRMTIeed+KY/n8Y+Q4IhbGRs4qpYWOfoaSUtfISBClelDKl0Jj0xmL7wVNff0EIm9j66gac+74qm/XfZW0OHfMSqSiyPPs/V/Y45vf5rgXL41skUdFAAAAAAAAwMWClwEAAAAAAADalEXLhP79IZZAnDmlK7TmMywZqPh6iDkQQ3C9Zvhv4/q1SbtWY6eISTvMKWaP9+R0BVg5WOoapwRHuGI4ZmzQE58dMawfzXH04XXGnh7CSQl5TmwcK4KQl62LIXIrE5IV8wLjhhSJyoh+WkuBwgb/8lJND1/GrTdCTtPCFWXk5EkVOz/KsrVXvfKVKvbY448n7UNHtAvRufNc0fflLxOVW6/QrhGPPb4naU8aV6DZEsuEpPSHSFf+zeT1+fPFELYc7iPjuCE/+76RaIhqtlaaI2VJUio1fOKYWu7AQZYCnTylj6tcx5IlS1Vs2RD7VDUbWrJw/vxZajeWLuXj01HQ1ZofmeScGTDHcWAb51pVVHJujuk+sChkGqPGVaIsZEilWS2VzGRYrlBOawlHzWWZgyskirZKekE4nmUD3dcMiLTrS+vK4IUMS96KPXxtdJoqzFmZ4yktc6qTcFtat0rFtt9wNe+zGaJvxf9y9Rb5+NYzOgc6Ovk49fcbKa24p8XWzUU4uDRFXjUDfU27QmJWNbEeIVPb0KfPbRDwfj31rHY5Cmf5OeLwIZYCbb9yq1ruaeEI15fpVrF9Ea/Ta+pjUhCb6xIyoZx56ukQfWdU0/30fuGOuGFKy6M7e7gPPOzraysdazlgKzBV5ms/bSTfktA8Q7ni4vTM8490HmoI+aNdh6xqbGVCQcT5WKtrGY9cZzPUz6a+fD7UmiG9bdG/+saJKuM///4TEUXiOnFF2zdyH+nUKd0ln9sv4bZkpJC+lMWZDjAK9TW6GFqxzwQAAAAAAAAsArwMAAAAAAAA0KbgZQAAAAAAAIA2ZdFzBkbHWRsd1LUovZBjLeNsVmtW66JS4vTUlIqNXWBdbL3OcwbyeWOjKfRptrpdoyl1jqb6nPhYMdUrc9JaNCO0/1bvJiyapAXpczjPuxwRUVNszxM6MGsPRaJasG/14kLL6JjvZYStZN1oOI8LHSV5dp8vT4odrMPeuGG9inUU2Bjx0YcfVbGGOJ/TxrK2M8u6Tj/mY/3M0wfUcp6oamy1kh0domqnsXiVEn+r1ZVn05c2ozmtu84L/Xk6o/NjZmYiaR87fkjFDhzYl7QPP8ux8XE930fa5fb19amYnCfQ2aFtHaWFsJ0z0KjZGrOtj6w+3ajoPrAmbIani3o+wZEiZ0Lg8bmv+p1quVSJj/FUYHWr/L2uLv092V02enWl8j1n2Uq2IPrfHlPp+tW9PE+rZKY8RWJOVRjqa6Mp9P+1FO/IhVjbMJZi7qOmY60rn66zPenbb9ilYh2rRH31ObaBrfd/ri2b2Fq0EeocmJnl81er6HkdgbjG60ZTLbXZ0uLQWkfKar6erTBLrJWejnR14pzoBFduXKO3Pc0V4OV+PfLkE2q5VJ7zO7t0mYo1xazBwFh/V8TzQL0hLLxDnWNuwPt/6vR5FZsU1WfXm/63Kvr0sw19TJzRWWo1anU+Tg1jlS2ZWx+Yj5NrtO3yeU7OCwjM/I9A5Kkp8E6B6g+N5l48U5lbMNWEza6cMxAGVn8vqm9Xde5UxbXmmPkQobhGmyKPHFcfu1SKv2efP0NxHTpmzqB8ZrH93wupud56PSYAAAAAAABgUeBlAAAAAAAAgDZl0TIhV1SljAJtoSRtDXOmAmEc8YCFrX549ixbO3Z3swyhmNdD6aEYWgqsJKHK66xV9fDojKjKWHb1MF5eVLrMi0q/nq+HAj1hV2olSgozLiOrB8cxSypsdT5Z7S6b0TITWUXOMdaRgbCxKk9pWcKM3IQpTny54rmyEq8+D339LG8ZOXdOxeTxttZfTpbXk0rx+otGyiGHqe1QoJSH2cqWvlhnoaDlGx2iknYuy9eMHX4dFjaqTz75uIqdPj3M7RFtC1qtck6khC3t4KC25i0IGVJnp5GmSNmTsZuU17ytjDxnPLYNyIjKpfXa5LwxWbGSiOjUuTNJ203xcm5G56AvFDhlY3HcvMBysdLshIoVelga9OzIsIo9M8oyIV9IC9PGorkg5JH57n4VK/awfWhnn67+vXw5V/huVlg28c37vqGWGxO2wVUjY9m4flPSvvYWbRucEfa8gaka2op0Ffg8uCktterq4Gu3Udf3yFKJ+4LI9J2+uI4nJmXuGCmQkOA0zH28GfJ5qES6Lwgd0YdkdB8y0M3Suqx4TnDMbbYpdCFGRUEZhyVtka0cK/vStJCZxNYWU0g4qvoeUZlgO9HH9+sK8wMjLHNqhq3f58lfaI+1rODrG7msqjIcGPt08T0pWZ3znCSWqxo5WGCTQiCfOWumArsv+zlxXViL91jc40NT2TxeoCqz60preGHjbJ4xI3mtmTSK5PEyzx6RrFJv9zm++P4QIwMAAAAAAAC0KXgZAAAAAAAAoE3BywAAAAAAAABtyqLnDIycOJ60rT1UNse6vVxkrCzFotWqthycnGRNv0Oso+rq1NZ2UkRYKWu94tS40MvOzKiYtEqzOmZpEeX28TtRoaD1hLHQc0VmHYHSc+lddoXIV2rHmkbvFgmtYcZodVNCZ+alzKkS2w6ntJ2bXxV6sdZwFqWG0FpLDSwRUUexO2n/zM/8jIp96p//d9KOjP1WKi01/Xyg/JR+Ry4WOZbJaK2u1Nzb+TJpodUPjabvnJjbsG/v3qT99J69arlDhw4n7YbRm/cPsGY1k9HXTHc3z0mQ16fdf/nZM/NSVIl2Y9UorwVpvUZE1Aj13J1WxM5b6e9nLf1vfOT/o2JHjx5J2gVjHSuP49QU918Tk9oGt1bjYxo4xvruLNshFvO6n5ieGk3a+bzW8h6u8DaGlvLcgq5lWvvvpzlHMp29Kpbp4jwLTbd9psr7NTM9lbTrpO8DpQr34Slf7+PKVUuSdhDqvlOeArcFrUQt3R2ssQ/NHJ5Q6q3NvUjaIVsttlpOzHEKjb66p5fPe0exQ8UmSjwfZCbU38uIPqRi5vT5YtmiwzlWntX3M3lPbjR0P6p+q9FU18z8k2Qx11pA8jqXd2l75bS4fmpmzllDzHPw0vq6DhfQsV+uzJSEXbq5V8jPDZMD0lq0ac6JvMe4wj49cuzcE77YG+Z+UxeWp3Zap7T3rBu70qZYj5wLWDfzGprCajQ2EwMdYbHtGWt42WfL+0Vs5q/KZ7mUnXsiP5qUaop5G66d4xNhzgAAAAAAAABgkeBlAAAAAAAAgDZl8TKhk8eSdqWsq+vFHg8b2uEjf4Hquw0xvDM+xkPFcaiH3DyP1zFT0kONk0IaVC2byqdyKNUMDZbLLDWZmeZ19A/qYXBHDAs5ZhjIceQwk/5tcghKSjFyOS3TkLKhtGNkQsLSz4wKU1UM2dGYrirrNJ9/ePRyRtqC2iHYC6KSta281yOsD5tm6DsW424dnZxznX3darmV69Ykbde1VYBZanH4sK5cvGfvnqR96JCuEHz2LFtKNsXwpdxfIqLBJTxsnUnr3MmKXJKSJCIiT6WSqHJtpGiuym9jm+pIeZupcCgWta6OvrfobqVlyAkp1mtec4uKvepVwhLTjBBHIpfLomr5yMhZtdyBg5xbBw8eMDHOreFjOs8Gh5Yn7XMjx1VMWjanhcQtk9f9b1cH9+8dphK1rJAdmx8Xi/V3COnnrl3b1XJBwJ+XL1+uYjt3Xp20u3u09a1O1xdSc/PyolvYEdfq+qLLCzvu2bKukirzyppjS/vgapnP0eyMlqnJfq9p5BZdHd1J2zNySE/kd9rTfVSH6H99YUGay2lbXU/0J1FkpEBCYlE1MspUQVhCi2ePwFghO+Lm6jT080VPH+e7lQnFobACNveFheRYlysNcd4dI6Wp1Tjn7P3ZF89vc+y35f2oKZfT57nRkBbhRmotzmcQWCmhkHmbhyhpOyqf0ay9t8x3xzVe7UKy6Zgfl0pznyot5K2UqS5+W2COq7y5WvtkXxyjtLErtatZDBgZAAAAAAAAoE3BywAAAAAAAABtCl4GAAAAAAAAaFMWLe6dFVZ3pbLW1XnSitGUQfaFrr67qK0XpSVhKpUWf9frGJvgbVdNqXVZej1ldGa+tKoy7z2u/BywFrBS0vMh0kK3b61Fpa5N2rcRETWr0pKUt2WmVCjNZtrYh7rSHspoEGUZ7NhYsZ35zg/4w8+/g1qBvj62bhwYWKJiEyI/zp7VWutVK1cnbauJl75dQcCax6NHD6ulDh7jz/v37Vex4eHhpD0t7BOfW7uwjc1qvX9nF9sEynkCnR1aFy0tQ63WUH62uRmG/Hs83593OXlMXCvoFIfLWmnK3LfzYHKpFvGzXQB7PORxzGaz8y9rzqH8Xkcnn/v+AW1xuH792qS9bdtWFctk+Hh/+n//k4o99cRDSXt2Vlsvd/ewNe1SodVfsXqlWm7ZAF97vb2DKtbby5akPd09KtbVxXrrQlHa2+q+Mpvl/e8Q9plERAWh+85lF59X8pjPve4vT3q6OSeqVjct7me5vNa2V6uswZd2h0REDTFnbckqPu/lWd0PVWpS16z3qy6sF83tjRwxh6DT9IFyTolU+9v5Sa7QaZvui7LiD35V3wcDsX5f3Gej0ORDU1yUWZ2bQZOPVy6tr+uQ5H6ZHWvBOSzSwtPODZXPb65r5peJ24pvvlev831K6uXl323M2lw3xbVQNfa1cmJRYGzdJWUx31Tazj+3Cl6HnQ8Ryf7c3BPksk2x/7F9jhTrjyKzDnEtpHydU9JhNYjsPIeLnzeKkQEAAAAAAADaFLwMAAAAAAAA0KYsWiYUCHslW1wviHhoRtptEhHlxPBccYHhc1cMH1WreohjYoJtR6sVPQzUFMMqWVNdVVo9BbEZwBQSHE/KIcwQztQUS1DKZT0MKe2oenr0sL6UBpVq/D3HVJ/zfbGPdSM9ENZr9ZJ+bxsY5O11pfXw+fmHnuEPLSITSgkJ1ayRRUkry5GRMyq28arNSdtWnmwGnGf1Bg8THj2uLRh/8PAjSdtKaXp7WRqxdv0avV8ZzrmFKjbKPPKN/Z4jhrpjY40m7WxTvh7e9jyRS+KaXGg/7BCo5z7/Pj4Hb9sek9DqmVqQOZIqwYKylIUOjXRCNjbMPb18fru6tb3n6tWrkvY6YYNLRPStb30raVtr5yuu4Gtj85XcXrlKy4QG+rivyZkKylISlU4Ze1tPWi+KbZvDI4/X3GMnKncucOzs91pFGiTJCMvNyNNanUBqBoyMQh8LfRDldZ0RfWyhX1scl6pCilHX98iKuF9X69re2/OE/bHJD2mr7Yp+LpXW60/5WfEdI5cVfVs6Y/s2Pg7KYtKWaBZ2pbGj+8BGg7cdmP4xjH0RM/sVtV4fGEbyXqR/n6z2bO8x8nqvVPS9W95zZB/RMDauenXmfiPWkTI5JverbtY5Xx/um3XUxTqaRmok93OuVIxRskWzXZlXoZWDi+siNJWXPbE5zzx3W7nRYsDIAAAAAAAAAG0KXgYAAAAAAABoU/AyAAAAAAAAQJuy6DkDGWGdmTIWmNLWzNqCSr1ioaDLjEstlixnbXVZUsOV8o39ptBfuZ6OqTkJpgQ5xc9vFzU1qe33ysrCTeuwKhXe55lprYVLpVhrWKvJcvBad5jJ8D7nM3r/i8KysWwsW9NiosPQslUqtqR/KbUap06dFp+05rOzk3X7pVJJxXp7hW1nZ4eKyRLh0oora+zlVq5i20Vrb6g008YysUmsJ7Q6QZmbociJqGEm5Ig89X2t2/dczhfHHBOp25Q2oFbPKXWOVmct5/HIbT33PaHlNlJJP2NKtrcgVjP741np4tbvmrkv3d3dSfvtb3+bir3pTbfPu05f9KVSa+ubPvbHrb+3+yE/L/S77X4s9hy0yvyBji7u56JZrc13lfZaH5dsls9nR1Hfg+V9tyMv+q9I34Njh5fLF/Xcv9Qs97k9KW0NOzHDVt2xo/seP837lVM2yVb/zO10xth7htxvF/K6/5U9rpRUh4Fef1POJzBy90aD1znXmpL33+ZiaJ6DWgGpuQ+C+Z/zQqOdbzQbz9smIqoJG89KVeS0ubR98czpOdbAdn5kfgeBPn/ymbYhnvPsb5PPG3ZenbQutf2mPF7ymdYzy8nj1Zgz94S316hoy1Nf3tfNPcF5AbcnjAwAAAAAAADQpuBlAAAAAAAAgDbFiV+U8W4AAAAAAADATzoYGQAAAAAAAKBNwcsAAAAAAAAAbQpeBgAAAAAAAGhT8DIAAAAAAABAm4KXAQAAAAAAANoUvAwAAAAAAADQpuBlAAAAAAAAgDYFLwMAAAAAAAC0KXgZAAAAAAAAoE3BywAAAAAAAABtCl4GAAAAAAAAaFPwMgAAAAAAAECbgpcBAAAAAAAA2hS8DAAAAAAAANCm4GUAAAAAAACANgUvAwAAAAAAALQpeBkAAAAAAACgTcHLAAAAAAAAAG0KXgYAAAAAAABoU/AyAAAAAAAAQJuClwEAAAAAAADaFLwMAAAAAAAA0KbgZQAAAAAAAIA2BS8DAAAAAAAAtCl4GQAAAAAAAKBNwcsAAAAAAAAAbQpeBgAAAAAAAGhT8DIAAAAAAABAm4KXAQAAAAAAANoUvAwAAAAAAADQpuBlAAAAAAAAgDYFLwMAAAAAAAC0KXgZAAAAAAAAoE3BywAAAAAAAABtCl4GAAAAAAAAaFPwMgAAAAAAAECbgpcBAAAAAAAA2hS8DAAAAAAAANCmXHYvA7Ozs1QsFum9731v8rcvfelL9JGPfOQFre/OO++kj370oz+u3QNtzM6dO2nnzp20ZcsW8n0/+fz2t7/9x7J+x3GoVCr9WNYFWg/kH7iUIP/ApWTNmjW0d+9e9bebb76ZvvKVr1yiPbq88C/1Dlwsn/nMZ2jXrl30+c9/nv7yL/+SisUi3X777XT77bc/7/JBEJDvX3Y/E1yG7N69m4iIhoeH6dprr00+S5CP4MUC+QcuJcg/cLnTzvl52Y0M3HPPPfRbv/Vb9MpXvpL+5V/+hYiIPvGJT9Add9xBRET3338/7dy5kz784Q/TjTfeSF/4whfozjvvpPe9731066230ubNm+nOO++ker0+Z93f/va36cYbb6Srr76atm7dSv/wD/+QxG6++eZku+vXr6e77747ic3OztL73vc+uu6662j79u109913U7PZfJGPBLhcWLNmDf33//7f6ZZbbqFf+qVfovvvv5+uvfbaJL53715as2ZN8vmrX/0qvexlL6MdO3bQzp076ZFHHlHri+OYfuu3fove9KY3UaVSeal+BrhMQf6BSwnyD1xqzp8/T29+85tp27ZttHXrVvq7v/u7JGbz89lnn6VXvOIVtGPHDtq2bRv97u/+LhERNZtN+u3f/m267rrraOfOnfSOd7yDpqamLtEv+vFzWb0C7du3j06dOkWvf/3rKQgC+pM/+RN6z3veM2e5PXv20Ec/+lH667/+ayJ6rnN55JFH6MEHH6RcLkdvfvOb6a/+6q/oN3/zN9X3du3aRT/4wQ/I8zyamJigXbt20etf/3oaGhoiIqKjR4/S/fffT41Gg7Zs2UIPPfQQ3XjjjfTrv/7r9KpXvYo+/vGPUxzH9L73vY8++tGP0q/+6q+++AcFXBacPHmSvvOd75DjOHT//ffPu9zhw4fprrvuou9973u0adMmajab6oZXq9XorrvuosHBQfrCF75ArnvZvc+DSwDyD1xKkH/gpeCOO+6gbDabfD5y5AgREX34wx+mzZs30xe+8AW6cOECXXPNNbRz50667rrriEjn56/8yq/QG9/4Rvov/+W/EBHRxMQEERH96Z/+KRWLRXr00UeJiOgP//AP6b/9t/9Gf/VXf/VS/sQXjcvqZeCee+6hd7/73eR5Hr3xjW+ku+++mw4cODBnuU2bNtFNN92k/vb2t7+disUiERG95z3voY997GNzXgbGx8fprrvuosOHD5Pv+zQ2Nkb79u1LXgbe8Y53kOd5lMvlaOfOnXT06FG68cYb6d5776WHH36Y/vzP/5yIiKrVKqXT6RfjEIDLlF/+5V8mx3F+5HLf+ta36A1veANt2rSJiIhSqRR1dXUl8de//vX0lre8hf7zf/7PL9q+gtYD+QcuJcg/8FLwuc99jrZu3Zp8vvnmm4mI6L777qOnn36aiIgGBwfp537u5+jb3/528jIg8/NVr3oVfeQjH6FyuUyvfvWr6bbbbiMionvvvZdmZmboc5/7HBERNRoNWr9+/Uv10150LpvX6mazSZ/+9Kfpk5/8JK1Zs4Y2bNhAlUqF/v7v/37Osj986F+I5+uY7r77bnr1q19NzzzzDO3evZs2bdpEtVotics3Ts/zKAgCInpu2PLee++l3bt30+7du+nQoUP0sY997IX8TNCiyJz0fZ/CMEw+yxz7Udx66630b//2bzQ7O/tj3T/Q2iD/wKUE+QcuNfaZT36W+fmWt7yFHnjgAbriiivoox/9KP30T/80ET33nPexj30sec7bv38/ffnLX35pdv4l4LJ5GfjiF79I69ato5GRERoeHqbh4WF64IEH6JOf/OSi9Pmf/exnqVwuUxiG9A//8A/J255kcnKSVq9eTY7j0Pe+973kTfJHcfvtt9Mf//EfJy8Hk5OTyfAUAJa1a9fS8ePHaXx8nIiIPvWpTyWx173udfT1r3+dDh8+TETPvQRPT08n8f/6X/8r3X777fTa176WJicnX9odBy0B8g9cSpB/4KXmtttuS+YJjI6O0he+8AV6zWte87zLPvvsszQ4OEjvfve76U/+5E/o4YcfJqLnnvP+4i/+IpGtVSoV2rdv30vzA14CLpuXgXvuuYfe9a53qb9t3bqVli1btqj/ErzqVa+in/3Zn6WrrrqKenp66EMf+tCcZf74j/+YPvKRj9ANN9xAn/jEJ+j6669f1L795V/+ZWKltn37drrttttoeHh4Ud8F7cfy5cvpN37jN+jaa6+lW265hbq7u5PYhg0b6J577qGf//mfp+3bt9N1111Hhw4dUt//1V/9VbrrrrvoNa95DZ0/f/4l3ntwuYP8A5cS5B94qfnrv/5r2rNnD23fvp1uueUW+p3f+Z1EImT57Gc/S9u3b6err76a3vGOd9Df/u3fEhHRb//2b9POnTvp+uuvp+3bt9MNN9zwvI5ZlytOHMfxpd6JF5s777yTrr32WvrgBz94qXcFAAAAAACAnxgum5EBAAAAAAAAwI+XthgZAAAAAAAAAMwFIwMAAAAAAAC0KXgZAAAAAAAAoE3BywAAAAAAAABtCl4GAAAAAAAAaFPwMgAAAAAAAECb4i92QVvKefFc/Pde6JbmIn/e4tYaO5H6nC12J+1VG3ep2OZdNyXtrdfoAhZdXT1Ju1qpJu0nH7pfLff097+ZtM8ee0bFmkF5Ufu8EFEc/eiFWppAtOdPd3mUToxOq9h3H+eiNw/vOapip0a44F0t9FQsdEXOOXbbvGysth7oxRw2+3IiHfPjMGkP9eZVbNumFUn75pdvTdrb1y1Ry+lvgYX41d//f5K2LXreNzCUtN1IB8szXCk15adUzPP4/zFOKi3Wr891WKsk7cj0xbmOTrGg7jPK0yVef1BTsZmpc7xO0U84UaiWawb8ueGkVayjm/s5P5NVsYNPPMi71eRtX3ntq9VyY1N8vW28aruKrdhwBa/D0deX687/vyxpkvfBN+yYd7nLiVdcszNpZzIZFZP356ZJzijic7vYY2YJQ86BINC52dnJ+ef7up87ePAg73NW50fk8/lsivWHgc0//j1Rw/w28T3P0/mRSotcdXm/IvMz5bHs7+tTsQ1rVyfta3ZepWKbN65K2oP9XSqWL+SS9tbrf5pagU//xe8l7VK5oWI9hULSTnm6f5qcnkrasatjDXFuSeSw6YIonRa5E+kcLvb2Ju1MV1HFaqVx3ueSvq8PreRzm/I5V+o13U/KvKqZWLk8k7QrlZKKheK6C2R/bp7JHJWQ+rfFER+T2NExVx4TE/MLvM8f/JXfo8WAkQEAAAAAAADaFLwMAAAAAAAA0Kb8WGRCanjRLua8gJpm5itqFQupfcz3XCG5iM33IrGiWLwTeWYoc2DVhqS9fefNKrZz141Ju2sgp2KTszxcv2/PE0n72acfVMuNjxzm/TCyIFf8cJSGk9iD4cwbi2POAcfIDEoNHq57dP/+pH3/Q/vVckdH6km7FulE6uhgoU2HHf4T8p/I5p8r9lN8L56T/CIW68s1jjnnqk09bPvEM5xXI2dZDjK86wq13K3XbE7afd16iJXEMKdj9kt1B479n8KPT+j3k4QT8TFOeSkTa4qY/l4sYg0j4UjFvJ5Mis+vQ3qc3HX4s+vqDaTTvI4o7lSxgpCupd0OFavUWXrkpHmYPw50LoUVlsKNnx/V+yUkFkMDAyqW7e5O2tNjnIMTE+fUcr4Yht+wYZWKNUTKB5G+vjxxDdmMi6LWk0emUnyeF7ofW7mMlAbZ78l7t2zb5VyxTrkfRERpIcexsaEhIZ8z+1UVedYMuZ+W0h8iooaQBgV+08Qaz9smIqpVWZ6byXE/nTX3+K5O7veWLOlXsWVDg0m7u1tfW5kM97+uq393ZDv8FmB8liUytaa+vmohS2Rc87AyNcOxuulbmkIPpCRm5vJ1HH42shKis8/sS9qxVjHSiiGWxVr5T9Xl89fRwTkQmDyqijySbSKiIBTPBnUTE329lNk55vi44rfG5kFV/tbI/O++IT6HRvuW69Y5vhgwMgAAAAAAAECbgpcBAAAAAAAA2hS8DAAAAAAAANCmLHrOwEIofaHVMs6xVFzMChf6vPhJA47ScBsNpLAaI2Er1blEa1bXX8V2oje8+loViwLWi5UmtV7s9NnzSXvv048n7ZHhI2q5utCnxSlr9CgEY5g0IFhg/or5HDmsaT51fkbFntp3LGkfP38iaY9OzqrlunNCSx/p8+wQ6xCHlmq9aUloJcslPR9E24TxeY5jLYgsFFnXmC9qTf/IebZNszrElFx/mX/P8SMn1XL/JiwrrzR67W1XrBE7rNcv1b9ui84RsDSrnD/5QreKOTHngWf7PDHXwPO1bjoSNoq1KvdX9brWreZSfIwbZn7I1CTnQSqlRbNOlfPOdXVuZaQOvD6VtDvS+nw2c6x9LcXanm92jH/3kpU6f3JF1lhPjZ5N2pHRDQ/0sa539IzOz6KIzbHWy/K1ERkhcStmpNTjW4tQqfe3cwYWYr65FXbOgFzOWovKZbu6tMWmXLbeqKtYVtjUhuL8We1/U6yj2dD7W61y/pXLpo8VxyQjJvJ05vX8vr5u3ueeTt3HFjtYe53J6HkB8vEiDPTxCpzWm7MiZelNc6ONxfmLjX49FnMrasYyuSEOYkZc365NYTkt1cxLKXTyXKhC1synavI66xV9TlJyVyqcc2G1opZzRR8dlfW8g0DkdMpcMyni/I7EJIiGsQiX00uaTTNXTDyn+maeWlDmbXvmgKWM9fViwMgAAAAAAAAAbQpeBgAAAAAAAGhTFq3hSWdZwuKZKppyaDqV0VIXL81DRL75nrXIEwH9UVTptN9RtmnGlskTwzaer/crne9O2h09bIm3btNGtdzLX8Eyoc1XDKnYv3/n+0m7u2etiskhneUrePi8O6N/W1MMM1nrvEjIC2IzDB4KK7bQDNsGwQsYI7qssPah3LbD2ycneOj4k/fer2IVURk6l+djdsFIFdIeDyNHpIe6yeNhw94leoh5osbynJlpLS/KiCFyqX6IY33ucmKI1UqBpibZ5jHl6Yqkrri0AyE56enXUqaTY3x8Ht/7HRX7uZ++NWlfvWW1iqXFUHDK/EvhBRcr/wnHifjc16tacpYR9oozZX0Omw0+9+lUQcWkPKLZEFVejQVpIK2QbT/XYOlOduSAivUSb9sNdO72iuH2iDh/3KY+oRVpm1obU7HJGi87du6C3i8hl3JDYWHZ0P1VNsVSjO987Wsqtn3ntqQ9OLRMr7+Tc9mx94wWTEJpvWj7OfnZSohkbCH5j2zbasQLVTGW8iUrO5KWivacxMI6OyVsdX3Tn4Sh6MvM/TOV5ry125YSpUKO+9FiQdsuFvK8jmJex1JCXjTHQVlQqehry/dbL//qQlJaqmkpl0yJdFrfi0LRX4XWal4820UiZu1J5U2lVtcynlDcM+1xl/dMK9+sCTmQ53CuNBpabqak3Ka6fEpck/WaiYmcDkPOzQvndB9aEZan8h5ARNTby33crJEa9wmr23xBP3tYK/DFgJEBAAAAAAAA2hS8DAAAAAAAANCm4GUAAAAAAACANmXRcwa8DGtdM3ldljuXZ011pqA1sV6W9WN2zoDnCd00SW2esWgS33MdPWfAUSaHRi+W5p+XK/SqWE8PW9atXbcmad903Xa13E3XbEjahw/t1usXOthssUPF/BRrFPuWsN662Kk120FDlPg25bJDYUcVhUZDLEpfB8ZqUM41aEkirc90XM6j0xNaV/ePX2db18ePT6jYpuWcx9mAbUA3LNX5XehdmbSrsdZDRh7nQJd1hu3n3Ozr099LCf2i1DunzTSa7qx4X3e1DnDLlquStu9ozWAkLNwqFba57ezQeu2myLHhCb3xT3z9iaTtGSHvyzfyMZlre+s8b/NyJ5Ba1Ya+HstCoyl1pEREJErWx4GOSWu6dI77zsjYgLpCsCz1p/9vkNdn5iQ0RB+bMnrdGaHdDx3+Xjqv11EW57ewdomKXZXjpI99bdnoCP11l3sl/93X18LMNM95yKV0DpbOn+FtO/qYe0KPns3qbVdqeo5OKyCnijievh49OZ/AfE/eTx0jfI+Erj6V4VzJ53VnJvuoKNS5SWL+mtSVP7es1HPr3HfEPCftTm7mPBCv385XiAK+Fux1lxIWq0Xxe4p53VcWxHWXTes5A2lhO96o6/wriTln2YyxXo5aqOP7IcL22iHdBynbWNfeD4S9Z13fn9Pius1l+Vi7Zv7H7Czfn+15yIs5H6m87luCOu9L4Om8LTc4V2PhxVkPdN8RiHld6Zy2bpbPvpXzkyo2PjmVtM+dHUnarumH16zge6nMZyKilcv52fH46VMqNtvk58Vs2vxf/wU4+mNkAAAAAAAAgDYFLwMAAAAAAAC0KYuXCQm7qJQZSktl+LOf0sM00obUMRIfioUtqKi0Zi3I0mJ7K1Zqi8NCgSUdE2JYhojowhjLQjJmn5ct7UvaWzYvT9rr1/Sp5ZpCxvP17zykYrMhr3N0+JyKjZxj28e6sIQKQy3haYihRlt5MRKHq1nXQ1dRU9pdaelHS2kzng+TR2Xx87/2wB4Ve+IA24R6OS3lCqXtmBgCzWf1ZdGR5xyOAz1MGIlh64xrKmyK4fmaOSdylF8OGvpGjpMRlWej2FRQFNVsPXvOxbUVpoSExdNDrPUa77Of1fKoU5Mc+8L9T6jYyj6W3a3s17ISaUvotFAuTosqutms7k/8gK/xdIc+jpGy5NMVfBvCQjTfYPlC3VaiFNvL5bQkxvU4Xyd8fS4uCLlM09iVlkociwK2u8tk9VD+jOijQnPt9XXyMHkhp/uv6Rn+rWkh4YgausK3/JdUaVYPtQedfL1VJ8+rmBcLeYqRoJZKJWo13NT81qLKbdbajkoZYkbfnzesYivtK4TscM3aNWo5me91I2e9cIaviwvn9Tk6d47vi6dOasvm2Vm255W77Hq6n5OVs211W6lWyZrKtPIYSbvLTEZfuzkhdfM83fdLR++GsX2sCrmKY6o+e3Hr9Hs/pC4q8VYrOgeaQprs53SOxcLqPDR9UCj6haAh+ojAWqnzic4XdP9XFNL0lOmf6sIKPIz1OrMyJ4SkvFHXv03K2Zum9PLUOc73kyf0M+C5M/y5WODcfOUrXqaWW9Lbze2ebhXbtmVH0n7wSf1s862HH0vaVjnqLeSDOw8YGQAAAAAAAKBNwcsAAAAAAAAAbQpeBgAAAAAAAGhTFj9nQMwF8I3+Xn72zJwB1xW6Ztdq+njznscx39qmifkEOWMLtmUHa6r6BgZV7NxZ1jI2TLnwbVeuT9pDQwWx3Ixa7qDQQz6177CKDa7ZkrQr01orWa0I2yopPFygzLu1XmuSsPIyOlDXe/75FkStOmNA6INJ59H9u48m7QcPnFExP8f5EpO1rBV5JjR3c3TuQpuccvX8jFDOdTF77Iv8TpnclxZ5cr88Y53nSttIo6OUuZNK6Zgj9tMP+BqU1+NzG5fWfHo+RFrMITh0Qeu8/+V7B5P2u9+wQ8V6hR3qnLkMlzGhuKbrZn5PLHTUUUPP77HLSuQ8oaDGOvfYZFNQ4fyJjH2znEvysNCREmm74ozRi4cif2pV/m3VuvltUodr+hpf5NNgv7ZNPn36dNLu7eO5WNWq1vMXhAa4UtXWlH0dfG9Jk+7DZ0tiWdM/RsaasBVIp4UVt50zIOfpmJg87xs2bFCxLVv4HrZGxEZGRtRy5TLPIykW9T3Yz/LnVet7VGz7NTckbTuf4Lv3fTNpT0zwnBU7LyAQ9qeOuX/K/qxS0bkjj4M8BvY+K1dprUv1sdTbjsV1Z/vmVrwLT4o5Ro2q/b3i2MT6+DbEnIFaw8x7y/Dxlnr8Rs1YqQsb95yZkyBt3OfkTiz6VzPdJBaPv77H63BJzxkoiX5mdkb3XWOjnLdV84zZIeamrFrKlswp27eL/nb9Gj0nNiueUS6c1dekmiMTmt/dtPNIfzQYGQAAAAAAAKBNwcsAAAAAAAAAbcqiZUIZUZUybao9SpmQ62mpgZQ9SCkQEZHrSNtRIZswI7y1Gg+j7N1/QMUmqjw087Lrr1Ox9evYMjRvql72FkVFwjQP6TVreqjniad2J+2pWT1EtGspD4sfP6pt01xhtZUSx6tS0taCanjXtfIUblrLM8eR9o12/Kv1hihlqp4Y1VKu7+1+NmlXIp1jsqqmkmsRkXSDc8QxC0MrxxFVYtM6vxtCjmAEOOQLSUVo5BXyNVyObNocWKgypyt+gOfri8aJeJjVE1WS41ivQ1qSpTwjLxBDlJGnr/ndz7J8bucRLc975VauqGiPyeWMrBYeBbYSqrDPC/Qws7pWzTls1mV1YmEXbI5cnOa8njRSxqKwMn35jder2Lp1LIdcvXqVXqdol4TN4/iEtvf8+jfvS9pHjp9QMVmJtNHUv7uuqqtXRFvLqKRyzTMWjYGobjszrX+3I/pEx239/2vJY2PlLAsh7zEHDx5UsbrIv84elvh8/vOfV8s98QRbC/f0aClQscifrYX3ylWcc1ddtUXFNm7mqtRPPcnrD43ES/bonunDfXFMZme1lHE+Ca7NMXkl2OreUqJUM88GUgoklyMiyppKta1Ab99A0o61Uox8cQz97i4VqwnJSialK1vXhLTr3AhbcQZNLVVMp/h4+sY+VFaN7u3VUsVslreXyWh5ZUcn5229wrlz/Iiu9DtymqXHNSNf2rJ5c9IuLtP3yJkp7kc7xTPg2VPagjSzmp9Tx0fHVWxSfF62VN9nU2L/Y/PcXY10X7wYWr8HBQAAAAAAADwveBkAAAAAAACgTVm0TCib707ac2RCojKiZyqoSmnQnJn6YmgpEtXhAlOlTg5nWwHM8FF2kpk1Mp7ay29M2hvMLO1amYeqJ7lQMXV36t82IYbPly9fpmKeIyQioa7a+bpbXp20nz3KQ+sHD4yp5QaEA0fdVL6bmBRDRqEehpw71MlEsZ3pf/kjM+KpQ3oY7/wkDzVmMnoYUjkDmVdfJZ8JebnYyK7CppAJ2fULqYKt+idNsea4+IiYI2VCeqk5+6JWITREjquHt2VVaumIYV1qHHF9ptNaYpUVO+ZaCZsYxX38GS0d2bqGhzOXFLU873ImkJW+zSUm5V1+vJCzjZWgPX+/56dMsko5msmzN//szybtG199s4rJyrG2APx8lGa0K8tTQir57LPPqpijpCvWxUa4aYnfE4b6tiPvC1ailxKOGR7p+4LcXqOhJRxBePFuGj/pyONkHYPsZ4mUAln6xP0nJSSQvb29arklS9gNxbpSxaJ/nClrqc7hEkslUo4+tzuvuTZpF7tY8lCtGBmZ+GmxkaJ54pqxEk4p3fFE/xvP6VKF3MfkTaXK++L7+gJylQTaXlytdw+WMtuMeQZcPsT5cXp8SsUef/jxpO0EOhdT4h5Tr/IzVCZrnO26uM8omHtpUfQRrtGYdxU7knanccFSenQhD+s0jpUn6pwTYUP3Qd1CqtPfp+VRnUXueyuiIvr4BS3DfPbY8aSdT+vreN06fm5dtmKpivWG/LtnqlpWNXxBuyouBowMAAAAAAAA0KbgZQAAAAAAAIA2BS8DAAAAAAAAtCmLnjOQyrBGzNpcyqkAVrkotYxzdY2yah3r0azmXVov+ia2YhnbMq1es0bFjjyzN2lrwzOi9et52Yky6xBnje3djl1s1bfmSq1XHB5mO9Hbb/9pFZMWVMNH2Q51zaohtdzWbVuTdj6n9ejTMzxfYXh4WMX27duXtK0mNIpaT694ZoLPy+GTEyrmZ1gXmDHzUkJZATvWxynjsxYwaApNqU1TYZGYqum5IdmcsN90jZZWTBrwzX5FkdiIkC76rqlQLaofR2b+gFT4mykD5Ih9aXqBDOjlMuJ3Z/R1nREHwjM620aOt35sXB+TfcMXkvYSYTN6uSMrgtuOzhEVsj1TIVv+z2WOJaSQv4biePvGKo5En7t0me5Ddl7zsqSdy+meLmzyPsdNfRKl5WRKzBc5dVLPARk+fixpSytRIm3FaCuD9vWxnrYotLuViqliLGwDrUWjK/I1m8maGB+vaM4cgVYytX0Oz13oXirnBWlyOb532+rBnR18XmJxLtevX6+W80X+2TkDjjj2vtkvaRM6MDCgYt1dbIlbFFW1rS5bnmf778tIzDGRNtJERLG09PVFX+brfXRFn2s153JRz9Mbd4UVcxDr/HPC1vs/ay7Nv2lgUFt4VkO+P99337+p2P7d+5P2NduuVLFBYc+e6uHcTKfNvUhc+72d+jlp2+aNSXvU2A/XRS4Vi9paVFaNThPHCpvWqeVmxbzRMyNnVWx8gp9F0lnd53SK/RwdG03aqZzejzUb1/I+eTr/6iKvcmb9+x5+OmnHnukbO/ScjsXQehkLAAAAAAAAWBR4GQAAAAAAAKBNWbRMSA6sRZGt0sdtOwoeyaFvX29ODlPLNlkZkti6HG4mItqyeVPS3rheD+98/Nt/nrRnLgzrdcavSdrLRJXE7h5t3zQzw8NfE+PaEmpoQFQ4zuhhmWf2PJO0t+3gobFiQQ/TnjrNtlKDg3rbkxM8PFWrz2+dV61aKzajGWkBjp3kqn2Ts/r35sSwm2OGa2XlXy/SsZTPw4TKts9IIWIpQYi0hZcby896GM8Tw8gpo7ORDopyyD9t1A1yX9JmeDsth7f115QNnpvlYX3PVBmWm/NSeuOpSEqsTE75LCtp1rUs7eCx00n7NS0kEwpCUWXT9GWeLypkmmrnsdA5Ria3XCHPkalrL2GZI6tEf0VE1NnB+R8YizkleTPWn3JfpDXnM/t0lffRSa6aHkU6j5uiUqhnOn9ZNbQkqsN6Zj/qFbbdyxe0BEDKf6JIH3MpzfCNLW7BVBttBfwFrEWVPavRCS1Unbkpbt5TU3yOhoZ0jg0MsK12o6FzLCVsNTs69P05LSRFVr4q7Xg7u/i+ODWtZaDlKss0pRUyEVEgciwydpRN0VeHrpAhG4vaOOTPjrlHyFgY6t9da/CBttJA37HC5MufYp6vzVxG/95vfOnrSfuJxx9XsS1rWHJ27ZZNKuZJX22hdc3n9fErCqnbkkFdifeKNeIec+Sois2KyyRn+gi3wPlSTfG2q1X9rLV0sC9pp02/393JeTszNa1iQch9UEnYk27YsEEtt24dP7dOTV5QsVrM+zhR0nl7/MQIbyvQ/cEVO3S178WAkQEAAAAAAADaFLwMAAAAAAAA0KbgZQAAAAAAAIA2ZfFzBoRG0ZaMl3MIbFXuSNjxxXPrgCdIzaPra21XOstatU2brlCxHcKqKmzacvW8vdMnjqhYZ+7WpP2ybWztVKpr7dXxU6xVrzW1lqy3i3VtUaD1hOvXsS7MF/tfrVTUcqkUaypXrND6at87z9s28wJWimUvXNA6s4mxc9RqnL4wnrRjozn2UtIC08RE3qZiY1fmcW5mCzmxnNa9pkRupoxWMgo5JzJGkxgL4XcQaFtaJxL5Li5Da//oiOvH6qJ9oZmOAzPPQWi7M2KugWuOnS++lvGNdV7Mnz0zHyIWlq2ROa7jUyVqRTyHf3M+q7Xtci5QZ17njzwXsxVtw1oVeeGI/tFM7VDa/1JN59Lu3Tw/KWhozXNDaO7TRofrpTifgoD7zvGS3sc3veWtSfvJhx9UsUMHeX6BtDElIpqdZg26Iy1tYzt3h39ctTKrYnHMdpShEcP39rE1ZdkcVy/Vev/nikUS2HkAjpgbVa/qe0xB2HZmszoHaiKXGsLu2EvpeS+uy9rlRtWcP3EtuFk9J85N8/di89zgiG4jFvu498xptdzoOPf9vT3a0lJqyyfKut+R3Vla9LFRQ+dRKeJ766yxD12aF3N6zD3Yr/M9v6NgbCsXmKdxuZJJ8z3yzMkzKrb/SbZx7+jQx2L7Nrb+XLW0V8Wmp6eSdiDmg3T3dqnllgib4lUrVqhYStzH/VD3jZ1iHolr7m+RmKOQkjaxpu/tFHMlugp6v3rEHJmTZ/Vz2MkRYScq5pSuXqPn46TEfLN0Th+fasTXYamkr5+U2JeyeD4iInLmf9Sel9bLWAAAAAAAAMCiwMsAAAAAAAAAbcqiZUKySmQYNBdYUiNtGQM9ykGurA4r9EVeSluELRliC8+X33Sjiq1dxXac3/63b6vYamHZ9FOvu0XF3vymn0raZ0dOJe3Rc1N6/0VlUZe0FGjTBh6u6s5pCcfYJA9bnz41lrQHBvrUcv39PMxUb+jxqSVLudKolRBJm7ZKRQ9fnhsZplZjssy/0c/qIWypTbMVqmMhT0jFWuoi5TPnTnIOHD28Vy2XkvZ1dvhNSDuuuuoqFTp1itc5Nattx1xPDp/zZRgYW7NlQ5wvtsL2M/sO8/cCaz3LuVpvsGxgnaksunTztUk7Y6xFXWktOkcmJCovOzr3q02dj63COjG829Wlh4tl9XAnNv9jEfKO6LweSo6rwi5S9MaOq493TQQfO3hcxZ45wkP2TVEtk4goiKT9pu5XZdXhK7ay/HK6pGUmI2d4/ddfc42KnRLVia3dqpR+dnd3c8DY1BY7+Ng1jXWvvNxKJS0Dkd1Ava7lAdWylg21ArGQAln7UHlI7XGanGRLbFuBuLeX+xdf2gWHxgJXnMu06X9jIcUMrBSoKe//Wl6UTgsJhLC2PTGmr5G6yOHyBS2BbQiZU6Wic7+jU1Q1HljC3zFVrstC4lsMtMQv18nyjnRd5/eaZXz/z7g6FragvXdKWCYf2P+Yis3M8PW29kpt8b5xA/eb/f2dKiaLRk+UWCIYGEl2JHqCzm5jGxzJa18/mzZqwpq4aeRt4pmtKWINUwG7S8ieCkYCms9yfpTN946d4WrFK9dwrvjm+bZc4++VjczTEffdSkMfk74lbLHa36ere/umGvxiwMgAAAAAAAAAbQpeBgAAAAAAAGhT8DIAAAAAAABAm7LoOQPpFFt4ha61V2R9XBzZUt+s57I6RxKWSo7D7Zyxb9q2jbXYO7asUbFHv/cd3lZd60Tf+c5fSNpXXrFWxaqixPnew6yJrQTaem1mjPWWy/u1DuuqDTxfYf+hYyr2g4cfStq1KmsSU8a6bFaUqXZSORVLCyssazXoEh9z39hF5jLG37UFqAi7vGK+R8Ucn4+bE9j3W05x38g4XYe17VlhQbZtq9b+S52tnTMQCR1s1pY7X86avs0da1TME3rZWpl1trWSsUYrcj4WCjr/dgiddyqtL+VGg9dTrbKGOFfUekv5c2y5dhJWg66ZM0BCIxuZuRhO0Hp6WSIiX/xM28+Nj7MN8Oyk1i4PCL1yNqPPU73OKw1EcjUcncc1YWt6dnRSxSbGppJ2dY6tMK8zMnruWMRmxZyTE6e1tePEOdZwr/+521Vs6VL+bX5K58+yZcuSdmcna4V9X+dLochzBurGojmo8TU6Nq5/2+wM2+m5ju4DUzaXWwBp92n1956YD1Isal3zvn08B6pe17pjZdUtbG5jo692xbn1Qn2OSMzzCCo6x6S1aGi0+pU6z6Nyq3zv7ja+iH6B82NmdErFahMTSbtgnmZywmq8LixrZd9LRFQUdtFps4+lcb6WO7r1BpYOsQ48a9ZZvYh5lZcLcu7J5OSUiknL2qGlgypWyHEOSBthIqJMRvRzM3zs5TMTEdHoBOeKvQfLeQf5rD5HR48NJ+2KsZTNd/F93ZPz5cztq7uTr6elA/q3yTkyY7M6Bzq7+Hvy+WJqakot56eFRb35bdIqumzmhnaI55Ksp/s75wV0fxgZAAAAAAAAoE3BywAAAAAAAABtykXIhHiYI3D0UFoz5iExqxCQwx4x6SEiaZ+XEVUM12/Q9oe3vnxn0t6yXFtTdd/8iqR9+JweWpou8+fRaS0heuTxfUn76X0s8cnmdQW408cPJu1XvOtnVKwohn6OHh5WsWcPPs3bvsDD7ufNEHz/8tVJu9C3XMVcl4ePYjN8GQnrrUZdDx8168Ia8Pc/QK3AY9/+56Td0a8rEA4sYwlYV+8SFevuYsst30gJXFFqMCsqSA726qHAorDSC6w/rrAWtVWis2L8stit89YRUglpCxgbSz+5x3aIf7CTrxk/tcClLDZQNVViJ4Wtad78b6CeEssaO8i0sMsMbUVovzX/xzA1yRUlSzNWlsV9jUt6rFe6fTqeqQArJFy1kHMiNBZ2JSnhcPX65Qixkzf2njLn61q60CmrJhc5Pxs13Y/6QkYxWdUSqI2bWWZSqVhpBO+ntGKVx4qIKJNnmZ/X1DK5kpRbeOa3CWmctKYmIkpn9HFuBXJ57qM8Y+M6NMQ21FNGTnXwwP6knfK1fqAiqvaOnz2ZtBumynVKyITiWOeflJuRlQKL9HNM/+sJyWy3qLT+xmuuVculRN/mhHodDWG3GMUmb+X3xEViq7OmRL+XMjlGwk6zq19XP54QFbZjV1fOprj1ZGoknvs6OvX11T/QnbRXrNDPMcU89zMZX9tqVsWxrwqJbGhyZXSKZZi9XftVbOcmliNGxmKbhC3t9KS2954pcV/W1c8Wu92d+l69RNjBL+nvVrGz5/mekDbSxD5RNTkt+tCOopaDu9IyuKqvO1fIqgrG0jcU12hk5Fex1Totgta8awMAAAAAAAB+JHgZAAAAAAAAoE3BywAAAAAAAABtyqLnDISRsA+N5xcGOo7WbrpCI+aaWCrDmucly1hn9ppX6JL3L9uyMmlnPa0LnBFWZt979KCKTc6w7Vgm1nqxfbsfTdqnR9iirlDUtqa7tm9M2mvXaXvSg4ePJ+1vffsHKhaFrBHLeqyZW7lig1ruZTfdkrSPnTqrYnWhrQ1jrfWW0vXI2I4GkZ5f0AqcOHx/0naPa71iusAav55BPWdg6bLNHOvWcwFWCltEEnrThik7XxX5Hkdaiye1yvaqkNcM1bSeulZhvWJT2JMVurVW3BHzDiIjdm0IfWRozrm8RmOh9w8d/dtSwrM255r/Dbi8X7GdbxHKOQN6v9x40d3K5UXI59BqMvNZvt4zKX2sfJ+PYxDrPPA9PnbVGp/Pckn3lXWhqW6YuSNRk+eqFLp1/yUtDx2TI73CMi9q8H6VZytquc4e7r9mK1MqduP1L0/a+/ceVbFSiXXUHWJbVaOLjcWck+qsjvni/uGl9HWf7+pO2j092m64s0NfR63AyVOnkvYrb7lNxZYMsW56avyCihWyrFFukrFsPM222nnRTxTyWp+cE587OrQ9cVenmA9S1+tvCntPadFMRNQU97QuMVdv/cohtVxKzI9wzdyl0gz3o7WanrOVF5aknsgxa0MbmH1WiLmMy9ZvU6GMeFZ4+KHvqti+Z57hD//X/zX/+i8jekQ/0NendfW9PWLOnZlb4QqfS9d4XqZ9vqarYo5n3cwNGStzn7R7t54zsGkFX/uZjF6/tDmdNXOapso8j9QRz7ApMx+nu4N/d09HXsVOjfA+xyY3szn+bf19nN+dHfo6iMR80DDS2w5Errqunm+RzfB17cfm3p22TyM/GowMAAAAAAAA0KbgZQAAAAAAAIA2ZdHj+XUxhG1G2ZQkwTGVM12PhzZkpTUiooIY5l23kS3qbty+Ri+X5SHzZ4ZLKva1hw4k7aPHT6lYpTSWtI88o2U8aeJhp6kzvFzYt1ott3HzrqRdbugf/rmvfitpn53R+xWIIZ2AeOhq5y4tgTojKiqWqnoYyxF2gkFDD5+HwlLNxuKw9aofuk1RSTXQNrFhzMdioj6hYiPHOT/8lB7efvkNr0zaa1ewna0T66FAOYRoB99k7kdGQqRixtaxNsHD25GQ6gQ5fY1IC8HQSpTEzjimRPV816RrpEYpIT8h31gGimWtLMYRQ6Kx9epzWvN/DB150ZeZTtAR/Vw+q4dzScivsl1aqrZ8PdvWrRBWt6WmPqby6DeaWtZQKQtLPvP/HU9U2Z4c1ZaTWzdembRHTrDkcXZK24d2CCe8gchce9PiejPV1YOIc2tKyDkmJ/Q1Ki35QlO5VQ7Zr5PVcomo2MVSBeNuO8casxUYPs4W2Ft36GN4aoTlPmeOHlGxgT6WbaRNpdKikBC5op+rm+OXTos+MNISIk/0ip1F3XeWSnxfdElLXRtllu5KiY+1IHXE9ZM21pSyz7WWtVEsrTB5vzrFcwcR0YyofNs011ZHkX9rOqO3nRfWvLPTUyr22KMPUKuRTfHv7cpoe8xecSwyKXP/FLb0s3WdV00hkZkVNreU1n3JrmvZbrYyq+XU0+Lemst2650W/V8ur89fJeR9yYgKxAV7nkWsMqWvu5LwjR4RNqNERE5GPm+Ie7yxiZef66bytyOqjjvGml/eyx1buth+XgStedcGAAAAAAAA/EjwMgAAAAAAAECbsmiZUBDx8JlnXEcWkgl5Pg8npQva6WL9BnbWee1NLJ9ZOaRnox8+yW4/9z92ZN5Yw1SfGxAz3juv1vKcRx+4X+wkDwstX60dg46PsITok5/5sortPcjDtpH53WHMw1PZIks/LkxPquUmhHOHa4ZAnVAcVyNQiZS7kJWnmCq5LYAcAfZT5jgFnMZxqI9TTji7xIGRWpXZ7cQTshdbQVZty3xWrj32HIkhbFultzjI8hBfDEvWjcQrkLIJ4+Jlr7XF4Jh1RE3OPy+jt53PiqFNW9BQ/DYbsrnaKkgXiNhUoq4JiY8vql4TEW246qqkvW7TVhXrGljK3xNuOa51hxDMNXPjoeU40hKfYJr7xNOH96mYG3Lf+fkzfO6XDej+d8Py7qTd092nYlMz3M9lTIXM0THuOzOiInDduL5UypxBvcYVSH6vs0s7mFSFVNJKRFoxBaUL05e+8DkVkxWCB7q1W0lduKb0dOh7cJdw+HGFzMtzrexQrK+m77NStuaaZwPpJmSd2JxQuMfM8n0xNFXY5akcHFqpYjVRLdvuV6eoJOuJysJVUym+UhH3YFtNXbjFhaG+5memWeY0Manv65MT2r2wFQhFH9dR0G5d3Z3d/MFeeyInakYuOy2OYSDurn0DWk6ZEdW3MwVd4fjMBMuLnEjf40+fYmnk2QtaJjlT5zyYFW5/1m3qVIH7oIKv87sq+p3Y3I/7erkfdYWLX81UeI/EAbOV0yPhwFk3LnKueG7wTeXsyIdMCAAAAAAAALBI8DIAAAAAAABAm4KXAQAAAAAAANqURc8ZkNaCsRVOCzxjL+cLa6TOXq0De9m1rOO/duu6pD18TuvtvvKd3Ul778FhFStVhCWZq22Ztm/bmbRXr3yd3q8s6wkPHOTKxd2Deh9Pnx1J2o0TWusViip5VuOb9VnDGQibp6lpXd0zkxX2U+a4Rr7QYgbWslUsPOd8tJ5gtqOfj5NjSi67JHR1DVOJt8l5mzJzDVIpns8ij1hkLPAiR2hYjZ7QI5kD818YobFKi4SOshEKzbdR4HuyEqOxC4tlkVpzyuNIzuORuWLnDAhbylDrXht16V2qj0naZa2xkQJTHLSetS0R0cQk90u+md+zeiPPC7j1ze9QsZUbNyVtW90yFLZyUZOPsWsmach5Wr7pY9NC55wK9H6dnn0yaY/TcRU79CxXDF6zgSt1d3RpXfa5E1xNdSzQmtY1S9iKOZrR+SP11tI68vQpbQFdyPM6V6xYoWJdXaxxlzaVRFqr7qW0ZabV77YCPT18LCbHx1Ss2NudtANjj3lKHO/zrrZlzIh8HFoiqqR26vkZ6Qyfy0ZDa+6llrmjqLXkHbIStJnsEqb4cyj6wHxeW0DXhS47nTbWomKVtrK13K+yqPieNXNbasJGNZ/XtpiB2C9rHX30CM9fHB8fV7FcTv+GVkAei4Kpotvdy3N9asaWdmyMz0NPVldWLwmtflE8H+Z69Lyl2Tpv29pjV0T1dDL3nmrM/ULd0X3XTFNYko+yZWjZaPpnRCX1l23Xc77k/nd396qY4/JvLYvcrFb1vTSTE/NqM+b+IObcNGr62bEp5i9E5tpqvoB5o63XYwIAAAAAAAAWBV4GAAAAAAAAaFMWLRPyXDEMawuOChmCZ4bPs3kektu4Xtt27tjBQy6TFR6a+cq3H1HLPfYMD2fXy9peiSL+vHKltvRbKYacDx7WlqSjEzykvWTpkNh/PdwciIpwtjKixFqqOT7/7pSwDIzNOpTyIzbWa2KYKfb08JovK9O6OtaK/PxPsfSiNqPtE+Ww3ui0rpB6+PDepK0qHBKRS3K4mI+hP8cskz8HJvc9IQ1yjYzHE1KFtHnvjho8jJcW588151LmnKyoSaSHrT1zUWaElVkg9t8KeBp1Pl5nzp7Q25ZSpob+prT/K3RoaYCUdrQSgTjX8pomIoo8/vzUE8+o2LGjXB22t1vLL7qFHKO3l4eZe4Tsg4iokONcjU0Fy+nRk0n7wJPfVLEz4zz8HaR1/zia4/M2tIorcIfhIbXcSaEu6hrUMp50nvf/9L49KpYTw9+BsGLNmSrbsu/MZLSEQ9o5ZtI6plPe2iub+0QLMCP6vc6CrgBbEZWgy9O6r5G2o01jvzkywjLYfmHFXSjoc5TNcn9i74Mz07xfxbyWj+TyvJ/W/jXfyfkeCXvvbFZvu1vkRGgkUH0iJ9atW6di584JW8lzU7yPpkqyzDmbf/K32grwo6NccbY0q+8tmbQ+P63A2fN8PJf36z5+cOmSpH341BkV68xz/lVSOjcb0tJTSKanSloS44vnw1TGPAuJ6tie0Ux39PF+ZYwt8qCU0ohnr6yRYQ528X6NTunzPFth+U+6S98HG9IiV8h4Oov6GpHSYyt1k5LQwV4tQ5qZnErakalY3/DtM8yPBiMDAAAAAAAAtCl4GQAAAAAAAKBNwcsAAAAAAAAAbcqi5wy4cs6A0SfLUshWcy8tMPt6tKZqdJR1+w89cDhpP7p7v1putixspYwUKuPxH7Zu2aJikzOs73r08adUbEZo0pYuXZq0pbaVSGtWbTlyNVfClIOOhfY7jPh7kbG+iqWtpLGDioSOLTbWUVIZF5vz4bgLeL9eppzezXrkqKmt7ULx87O+1mouFTakTknrTTsrfHy760IPbtYf+3zOOge17trtZP1pfUzby0XnWUsb1nTidghNuDy3kxNTarms1LOmdY7JEu1+U69/8twF/iB0h7kerVn3HP5tM5OnVUzmVdPofWdm2W7Nz+p5QtpW773UKsi+ra5l+/SZf/1S0h4f17rSjgL3e51GV9ondKDLV65K2jt3Xq2We9Urrk/aXXmta37iUZ5jVY+0Hnr19puTdslY36ZWsz3l9BifT6+obf2GNmxP2r19WndbLXOOHz12TMWWDvFcrKrQtw4uWaKWo4gPprUPPXfufNJesUJbnsp5G06kr9m0oz+3AvVZvl/Gnj6XRaHNLxprTr+H70UzM/r4XrjAcw0eevjppD18YkQtN9jP/UYxpzXb+Tzrx8tl3U8MLRNW3cYSsivFuf/9x3jbp89r29Q+YVs5YObcrFrOOTFobMGlBn3J0LKknc3oZ5SKsCe3ptyRtJkM9UU/MNCdtJcv7VaxqTF9HbYCuSIfz86ebhWri3lMZ89p+1pvkM/f+Ky2jY8izqUVG/n5rVc8kxERFdJ8rTfNeWiIs5Y2zz6+tP5u6Pky0qJUzkcqGAvyzizny/lTwyrWFJMI1xhb5EqTt10X1spFcw/w5Zyeuu63ImF/OtjXo2KNKe6zrZVo9AKslTEyAAAAAAAAQJuClwEAAAAAAADalEXLhGTFTStC8VNiNSY4OMhDzlGgh2nuvfcrSXtSWDaVa3qoxBcSpcjscp8YTsp36mGUb3/nu0n7jLAZIyJaMshD1bLYZ9NIgWzVwcUSCumHlB4FpjpfLI5JFNmhHlnd1ljnRVJCZG31Wq8C8XTMQ2K1aFbFgpClLuVJfXyzwspscKWWP2QKnFdd3TzU3WOsv1Iu51x6iZZJlIu8jkZTS8B6hPSow1jNFft5iFxa1nkm3ZRlrZEJFXt4HemG/qJf5X2RMj4nq9fx7Am2kTxvrUVF5eVMVg+tZ8RIajPUNnCTE1ou1SpMimHZTEEfxyji8xQaC9jQYanB+QktgTgnjtUzQmZz/yMPquX2PP1Q0l7Rq239il2ck1fferuKffO7/5a0H3nwByq26xqWHl25dUfSHly+Wi03NslSnSMHte3olJC1FQtaGqGKbod8DLq6tNTjzBmWtO3be0DF8h0sIwhCff3mM7yBYkof885c61k7rl3O9yx7X8qL32stWL0s58tMXedflGbp0ViZ1zl+fEIt132el+vK6PuUK/qXrLGN7erg/erq0vKlbiF7+M73WOp24ozex0KBf0/aVPBOefP/7p5u/vxTr7khaW/eqC1IJ6ZZulIweePFnGPlipZYrV3HVulnj2lZy9Sktr9uBVJCshqE+hmjR9yLSrP6/lwX13u1rr8nJdR5Ub3a2r/mPL7/lKqm2q54XkxntMRH2tlaS1x5rmXV69jcx6em+feMj2uZUygkuLW6/l46w+tMi+WyRoZUqYvqxCVtjT4o5MTSXpqIKBI2u4GRCbvmOCwGjAwAAAAAAADQpuBlAAAAAAAAgDYFLwMAAAAAAAC0KRcxZ4DfGxzztThmrdRAvy6ZfOurb0najzz6uIodO3YqaWfzrBdLedq6LCXsolxjHTW0hLV6e3bvVbHdTzyWtPv6tSVkVujFyqJEezPU2qtI6NHJ2ntKPbcxJZOWoc0Ga9qCpta0Rw3+HIZac6bmDBhbNkfY8QWmRHvQ0NtoBZzlbBs3MaZ1dZ7DekK3qLXtkcwdX2tWn51i+7w9Xz6StDtJ6+16l/C204M6v6sRn7PStNaJdoj9ihpa01wX50zOC/CNJlbqYEtmzk26Q1i9kf7d5QusRa+XOf/qjtb7pgf4ulu1YpWKVSqsj6w3tF62EfA6G029XxTrfWkVajVhw1rWmuqUsHJzjJ67VhFzKhx9fuVcrKz430x2RmtTZ558NGmfMv/D2XXz65L2d7/5FRX7x0/9r6Q9Mab3uVLi87Z06XJeblzP+Zgd5c8XzpxSsSPH2BJ6aFDPp/Ea/LvrFb5mj45doPno69fzCZYPsXVkLmPmixU4B3vSun+cKBnv1xbAF3aiqYzW5qfSfM8sx/o+cv4CH5vz03o+FDlT3E4LnXZGz7+Le3h758eOqli1zPPxXHOP7BGWp51ZrXmuiv2cnOC+s6eodftdBb5Gqg3df82WOAdmSPdD50c5Jqf4pM3zxdTUVNLOmzkPvWJeQ39B57eb47kYDz2q57o89ph+1mkFUsKStd7Uz2E9HZw73cb+df0mtgzd+8w+FQtEn5rLcG4Gxrt5XNh9l828y5LoW/KD2ra4T3yeNbbFOZGb8vZZa+jrp1zlfmx0SvfLKfHcWi7r/eoQ/XTaF1bzDWsfys8CvqNzM5vm3I8ifUya1BRtfd1VKvo3LAaMDAAAAAAAANCm4GUAAAAAAACANmXRMiGiaJ42UVZUIL3ttteo2LGjbFd45Nnj+nsFHhaS8h/f0zIDaV2aSulhlJOnn03ajz36sIr197O8o69fD/HVRDW6QFTPC0yFYFkxWNk8EpFn6gBLZDVhRxwvK/eJxWdrERoKqVFobEdjsV8NU7WuXtNWj63A0FKWsBw786yKpXxZgVDnR414CC7t6yHglUtYOtZwOR/SFX2su5eKPFqvbRfjEg8Nfm33V1UsvXF90u5fOaRizSp/T1aMlhWHiYjqdd6vg4/rIdZbXntb0h7I66HZE2L9dSE/y6b0MbjySq4u292rZVT1BluqVWvaLm5GVEMdm5hUMd9rPVtHIqJCkY/d1Dn9m2UfkstpmVkkpRPG9VdKijq6uD9cYqoA93RxXmRNdcmv/vv9SfvAtD5PbszXQ6GgJSIjZ04m7Qe+/52kXa/q/uT4EZYCnTo5rGLVGg/Rj5zU/Xt3B8sosp08nJ7v0PmxaSNf2/2FZSrW4fP3+nr1b/OFNGbEVH2erlsD7MufopDZpFJGiidSomakrvWI87Hp6lt+syLkip6QrHV3q+UckTvVc1om1NfH0slCbn5LyBkjsZgUEhE/x9sb7NV9WVeaf0/ZyFOE6ziF5nGm0Cn6UlFpfXxMX7vSfrJc0vfOhug744y1xB0TbV11V/bbrUJaWGJ6Jo8uXGDpX0eH7me6urgfyBf0PSaV5nttJs0nM2zOL/Oz90jZqRaKev1ZIQWqmH4tkBaiol82DqRKDl43tqOy/06n9TXZFM+Yjqi0HEZ6A1HEG89m9f3ZFX19w8jBfSEhio2nfy28+PzDyAAAAAAAAABtCl4GAAAAAAAAaFMWLROSVW1j0kMl/+E/vDZpZ4zLwSOPs6NP7JnhEfHRFRXayMqEMjzUM1vSTheHjvCQ5bJVugpgby87ZDSNC0EohvUj4YYSGmcUWxVYIivaWZcjObzji5nkTmicmISsxbEaAuVIpGeqh2IIql7V7jr1qh4ybwW2rt+ctJ987NsqFjtiSNEzx1BIrxpmCPiJ008l7cok53Ta1fnnnhLyh+/r8yclFd1maP3cCFdunRSVWomIMkJKEqtq1fMPj8Zm+P+L//x53rYYiv1/V5o0HTGEGEf6+HgFvl6vv2GHikn3lmxau4v0dLJLw9ASvc6BQX0dtgoZcTz8lP4/yvgED5Nn8mYoXFWc1N9zHVkdmvMus2q5Wi49xFKMc+fPq9jDT3EeZzzd/w72szzNM5UvZ8tTSXv34yyxnJrUMoqZGV7OMW5UHaJSaFeHlmJ2d7MMb+kK3o/eHu3I1ZFmKVBXQfdd/V1cldlpaAng2XN8LCdISzhC/+IrcP6kkxWyKHtfigPuG1LGSMQjllf5rqlUKuUYkahoaqSn42P8efMqLXlcOyQqHFf0/fPC+BTvR5fuQ1au4xyviOqtXcYZakmO9/nCpJaKSRcVx8h4hlZyPzSU5b6/YZxqymKfJ0z19MlxlgJNm+qzJSHF7Mjq83HlhtbrA8fEsYiMW01Y52cQ+bxDpCs3p9OmgrTok8plXs5Wso5Fvntm/VlRbXdqUjum1YQTUNNIfKRzX0r07VGoz6X6npWK+/M7SqbEb5VS7lxKyyTlc2Rg5FHyubhU1s8vsZBqGeUoFTNarrcYMDIAAAAAAABAm4KXAQAAAAAAANoUvAwAAAAAAADQpix6zkAgLLZuesV1KrZmzZqk/a9f+LqKNYQGOmVsk2KpsxdVAR2jCYuJP2fzWhu9Zt22pJ3JacuphpgnYCsLB0IXJucMxEazreY1mOqKyjHQSNWlP5UjBV1GcyZtJa2lFQmdXGhspRrCPrRhrESbNa33bAV2bLs6aS+5T+upT53j6sFBymhp5TkK9Ek6Lipgnz7OekiHdP45wv5V2r0+95m39+Y3v1nFjj7L81nGJ7UWNRZpINdh7Ws3bNyQtLs6tOb2m1+9L2nnjU7dk9eTzD9jX5sTOvWXXbeVNMIeN9b7JW1wPU/rs1et1ParrUJT6DlTRn+fSXPftmrVShXbtp3tW//9/h+o2Jio7lsVlTRnzp9Ty+0XetSSmSMU17lvSHVpPeoVV/I5nTR62v3PcJXU0TO8vZrRi2dEjvQN6AqfWzZvStpLl+gK1q4rrAgd7mNzRuDa08Na7M6+URWbGeNlZ8d0/jeEzXRs5kpEczrky59I2BjOud2IeUGFlKnUnONjH5nqp3GOz21TVlOv6XkpUZ37grqZd/DsJFdyn5jVuRlkeT5I76orVMzr4nyJS/y9SnlELVcK+f5WKus5CdNVzoGisa1sRnwcZmZExXTS99Ke3u6knc+bPBJz81LmqPcU+Hkjv17fk6LQTNxoASpCs+6ZqW11MX+iaZ5V0mKuS7FDn6PZWV6nrLDd1aE172XxTOOYCtIknqHsdS9vp3FTPxvIPlxW+nXIzK1yuX/Kmf0viM/5gs6doC7svUWf2ivyjYioIY5lvaaPnSseCmvGrnZWzIGU1qVERJF53l0MGBkAAAAAAACgTcHLAAAAAAAAAG3KomVCq1dwZcg3v+n1KvbFL34raV8ww9vpLA9bu6Y6rCfGcDwx1ON5tgQcD/2kTAVVIl5/ZIaBYmkTaixDYzkULoYCXTsAK/bZM69OqpqwkV84YpjQEdIjx8hMHPE1z1SR8yJeNjb7L4egGlVtOxoYG9JWYM3qjUn72mtuUrGjX2CZUDatj2EghsucWOefLyoS53JcNdHKiWIhl7FVBqXEx9qCnjl7JmmfPn2aXgjpFA9FX7WlW8WyGd7nXFYPX0qr22YgbNlMBex0en4LRs+VVob6e6E4rgMD2ipy+TJdRbZVOH+eZTaOr6tsbty4JWmn8zpHrhBSmuPHh1VsamqKP4iq5fW6sQsWY8l2CNgVOZg2EhGZ/6F1LhaWeb6QgS3p07aIazeuTdqr12kJWIeoyuw6JpdE3hVER7ekS0tVUlkeGh89o+1Jx2ZZZhKmTd8p5HxpI8vwnYsfJv9JJ53mvmCOpFTcOxxf51+/qK7eZWwNs0MsvaoLecfY5JRabmaaP09Om/MQi8/mPpjJ8nVS8wdUrN5kK9CmL2Qh9WG13PkxIUOq6j58mrjvcR39u2emWd5RnWTr3/4u/QyRzXM+ZrNGxiukaKWavgdLi8tMRh9XL22r5F7+SAlrzsipzgr77UZDH6eKsPdMpfT5kzIe+b2aqRYsreDTRiaUEvfkekPLbKRkaY7EN5IyWO4cbf8qJeW5vJYv5Qv82cqjGuI5TFqqFk2F5pkSLzc9OaNiC1Wyboj99M2zoxOHdvEfCUYGAAAAAAAAaFPwMgAAAAAAAECbgpcBAAAAAAAA2pRFzxn46VtfkbTPDw+r2Jc+86mkXa9r7aYzn8UhGVtNOX/A09o/+z2N1EoZUWzAeiurF5Mlp7Vlm9GLi320to8LItYvS2lb7bXatikxH4WsQbOltAPx2WrVo7D15gzIVH3VTbepyMOPs13jibP7VSwtyozHkT6GUSTsDnO83IZ1G9VyK1as4G09/LCKnR7huQCVirZ4lWXGraVsSlhRSv/TOedZpES5onXk5PB5dz2tc+zqYgve9evXJ+3RCxfUcjJ3ZC4SETnS2jYwMYev6zWr16iY1VW2CvnOwaTd0aXnSfT2s+Xm/oN7Veyv/uJ/JO1SSZ/DSoW1sb7Q+wemv2oGsp/Q56KQE7lk+pfRs2yfOz2j9agVsS9L+1jPve1lV6vl+gb5t+VNX1wTc1CiSO/z0hyvf6CLf1u5pvXUZ85wrBZo6+gozesPzP+uXOH77Ju5MK34X66ssOb2jG46Fn1I2lh49/X1J+18rkPF0mnWugdCZzw9M62Wk/3G+OSkilUqJd6PwMzd6OY5CSVjQRyneJ6TlPt7Ga2pDmf5t6ZcfY/sTnHO5Zp6v1JirldvF2+rq1vPr5LzHBpNc9015X1c55gn7kmNhv7ddm5WK9BX5PPimEfHgrC2bpr7rCOOby6jn+1KrozxVTtnzo/LxzNv5x2I22yT9PdSoiModum8SqXEvsi5haGxIBXttLmP53w+DikzkccR8/HkHkfmHp8Sv00eAyI9T9U3fa88DnFs5pta+9VF0Ip9JgAAAAAAAGAR4GUAAAAAAACANmXRMqFnHn8waX/zm/+mYieePZy0rTVnTMJWc5HbsgNsl3LATb4tXcx+zLvsYg8CEZEc+rFeci1YYXNh+PeuWb1eRf7DbW9I2v/42VMqFrosmbLSi2ye0//2n7o9aV+76xq1XF8/SyjCSNuHTX2L7SaXLBlUsdlZtmHs6tbVUz1R/TBeQCa0ZAnbPPb3amlKochyiy1bNqjYW9/21qS9fj1bQz57+Iha7gff/37SnjB2gj19PKwamWHIFctYOrV8ua6467To/xjWb+ZqvlKGRUTUEJZ21YqW6Z0+xRazVoolpYd1YV3o2Erl8sPccue8bWMzfOo4981lI2NbOsTynx1X7+C/d+s89hqy+qzetuPyNbWyW8uQBos8wH5+ivN6ZMZY97lsMemmdUzKNk3hW1UZPHKsbOZiOtrLAzn0ryQOpPMom9MyIc/jfs7KNLq7+NgHQs7R26Pze/kQ90PVms6xc+fPJu2zp3X14LqQQzaNjXHd5X2RkuGGkePI+2DGJEGKOOdyRsqYF9afaZ/lUKGR0YahkFvoLSt7Zc/IU6SttO23CzltNdoKOEJCFbnmfrCSq0kXprQcR2KtrHt7+b4YC4mPrYKeEnKchok5Tc79tK/PUVP0lVY44yiJtvg9JgnSPu9zV7FTxTIO75dj+hxHxBqibx8f1ZXgHdGnOqQlSmPjY0nb2q0Wc3z/rxvf6DjQzymLoTXv2gAAAAAAAIAfCV4GAAAAAAAAaFPwMgAAAAAAAECbsug5A3/3tx9N2vWmtdFirdRcJfv8erx5MbZczqK/aUsyi3edRa7ixzVfQc+deGEbj5W9lgnOL3G7tJMsXjSE7ZjRU//UrTxnYOTksIp9+f7PJW07Z6B/gC33Nm9mzb1HWm934RzPQ3CstV0Pawjn6P0HlyXtwcEhFZMuYcqy1pw7qQ12zbyRrs7upL19x3YVW7uWNZxj46zpbYZad3j2PFsGPvn0Myq2bduVSXv1aj0n4aptPK8ik9F2hS2agErvesFYtFaFnnNoSJ9reQ7PnTunYuUy229GobQ41DkoY3bekSuSyc5JkGdi40ZtmbtOzCXp7GBtd9zUG4hDjhUyUyq2oY/3P2367aOjfK2MV4TdrKetHWVex2Y+hPxorZ3l58h+z+rOW4BMhjXCds6AL7TSKd/YE4rjmzGxSmk2aSsbbU8vJzXwfT3dKtbZyRrxrg7dF4wIh9JGpHX0DaERj4WHcqOq7XeLYp8zWb2OtIh1FrUqPC/mR8QiFMW6n5Z2ok6gc19e847pf+WcgTlWr1HrzVnJFfg8h67W/rsxX9P5Tq2rl1einTOg+jJxzTbqdb2Y0O37aZ37Et/Xj7SufP4MjDWsOGeuuLaaDf2cUBDzBLrMdZcRvycwfVBN5HQkNf1m/SSe82yOVcT8iNBYyPty3qFJt2aEOQMAAAAAAACARYKXAQAAAAAAANqURcuEpDRoznCZHAgy4xULGOSRHkCSUqP5rfMWYq7ER/xlkaN2tnDgC7VDjV5ABULrHqpkTgt9b86+tN4QucQ6KxbyPIz3cz/7dhU7P8sVgh957FEVm53lIfIfPPBI0s6ndAXdsrCKHDk9qmKnTrIE59SJL6iYrNJrrxmZaI44g3OWE8S2umKalx0+fkLF7rvvO0l7emYqaVfKWiY0NsY2Z1OT/SoWi/y7cvNVKtbbo5fVtN4QORHRyMjIvDE55NxphsmlDamsZk2kpWVS4lM3w+QLSRLSYojbM1KaQkFUXjV2qLKScSis6Oq+tiDt7eJ93NajZXJNYTO554K+biYd/iytAVOhrkAcufMPabtCumJ/t67eHs0baxUyGSmx0NdYymf5Qialc8AXxy0w8rN6jc9tU1QczxprzK4OlogYBRENDrD1cqeRCWUnWdpQOa+/V5/h3PGFpWJHn75+uoWsx8tomUkuzTuTM7a3KWEFGolj0DQWpKGQ4DVNBeJ6nffR5l9eVFqX9q1ERI3Kxcs0ftLp6ODz0jAyqFhWH4/1scioytk6eWQ/1xB9YSar+4icWEfWVNiWckHHXBdSdijPJRFRKPqIrKj+XszrfqzZ4O1Fsc4dmRMVa+cpcimT5fVnjJSpWtP9raSQl5a4ettK3maeN+31uxgwMgAAAAAAAECbgpcBAAAAAAAA2hS8DAAAAAAAANCmLHrOAC1kHyrmCcy1AQ1FbJFYi81Ffm2Odv7HIF1+oat4Iar9ud9x5mn/+Ld9OSG1+EREsTjRK5dvUrEP3PWrSdujv1Wxr37p35L2V7769aQdNY11mVh/GGlbukDoTz3PMTHWKIbG1vTHQSrgd/kf/OAHKvbwwzwHwhW6Rmt5lxVWfUNDK1Xs1te8NmmvX6+Pq5Rku23yL4UF53MIbarVq8vvWb2r1PRL/and1kLbtpab8xEYazo598YXWt7VvbNquf4iWz2OjGnN9onJ3qRdzerrklyhqQ7FrcbR1pFyborVZTsL2I7K42x/m5xj0SpIu2o5l4KIyBWaYdecBkdp6fVxyghpcc7lfq9/YIlartjZw+szTw0y/5qBDq5Y1p20+5ZpS9mJadZKx+J81cbXq+WCCm+7UddznqImr0POOyAiSon+2BGa/pRn7Wv5c+Dr4xMIHbjVu+fS4no158PPtd68qc48X/ulmr4PkrivuOb+nJYpYbTtvjiGKXn+zPFMi3kwbqzPkbQPtZa7sssIm6b/CPg3xE3Oq5TJb98X+RHoHJNa/bSxHXdDng+R9vjY5e0+ikMZBPq4OoFcv86/lJgvQ3VzPkLzeRG0yW0cAAAAAAAAYMHLAAAAAAAAAG2KE9uxVwAAAAAAAEBbgJEBAAAAAAAA2hS8DAAAAAAAANCm4GUAAAAAAACANgUvAwAAAAAAALQpeBkAAAAAAACgTcHLAAAAAAAAAG0KXgYAAAAAAABoU/AyAAAAAAAAQJuClwEAAAAAAADaFLwMAAAAAAAA0KbgZQAAAAAAAIA2BS8DAAAAAAAAtCl4GQAAAAAAAKBNwcsAAAAAAAAAbQpeBgAAAAAAAGhT8DIAAAAAAABAm4KXAQAAAAAAANoUvAwAAAAAAADQpuBlAAAAAAAAgDYFLwMAAAAAAAC0KXgZAAAAAAAAoE3BywAAAAAAAABtCl4GAAAAAAAAaFPwMgAAAAAAAECbgpcBAAAAAAAA2hS8DAAAAAAAANCm4GUAAAAAAACANgUvAwAAAAAAALQpeBkAAAAAAACgTcHLAAAAAAAAAG0KXgYAAAAAAABoU/AyAAAAAAAAQJuClwEAAAAAAADaFLwMAAAAAAAA0KbgZQAAAAAAAIA2BS8DAAAAAAAAtCl4GQAAAAAAAKBNwcsAAAAAAAAAbUpLvwysWbOGNm/eTDt37qQrr7yS3vnOd1K5XKYvfelL9JGPfOSi1rN3794XcU9BK4L8A5eaH+bgjh07aOPGjfSmN72JHnzwwUu9W6BNQP6BS4m8B+/cuZPuvvvuS71LP7H4l3oHXmw+97nP0datWymOY/qZn/kZ+sQnPkH/6T/9J7r99tufd/kgCMj3W/6wgJcI5B+41PwwB4mIvvjFL9Ib3vAG+uY3v0nXX3/9Jd4z0A4g/8ClROafJQxD8jzvJd6jn0xaemRAUq/XqVwuU09PD33iE5+gO+64g4iI7r//ftq5cyd9+MMfphtvvJG+8IUv0Pe//33atm0bXXfddfTBD36Q4ji+xHsPLneQf+AngTe96U30gQ98gP7sz/6MSqUSvec976GtW7fS1q1b6fd///eT5fbv30/XX389bd26ld75znfSDTfcQF/5ylcu4Z6DVgD5By4ln/jEJ+j1r389vfvd76Zrr72WHn30UfrGN75Bu3btou3bt9OrX/1q2r9/f7L87/zO79CGDRvo+uuvp4985CN07bXXXsK9f3Fp+ZeBO+64g3bu3ElLliwhx3HobW9725xl9uzZQ29729vooYceottvv53e8Y530P/4H/+DHn30UXrVq15FJ0+evAR7DloB5B/4SeNlL3sZ7du3j/7wD/+QGo0G7dmzhx555BG699576bOf/SwREf3iL/4ifehDH6K9e/fSr//6r9Njjz12ifcatArIP/BS8sN78M6dO2lycpJ+8IMf0H/9r/+VHn/8cVq/fj39wi/8Av2v//W/aM+ePfT+978/uUd/+ctfpq985Sv09NNP00MPPURHjx69xL/kxaXlXwY+97nP0e7du2l8fJzWrl1Lv/VbvzVnmU2bNtFNN91ERESHDh2ifD5PN998MxERve1tb6Ourq6XcpdBC4H8Az9p/HCk6b777qO7776bXNelQqFA7373u+m+++6jmZkZ2rt3L73zne8kIqJrrrmGtm/ffil3GbQQyD/wUvLDe/Du3bupp6eHbrrpJtq4cSMRET3yyCO0c+dO2rZtGxERvetd76LTp0/T2bNn6bvf/S697W1vo0KhQK7r0i/90i9dyp/xotPyLwM/xPd9estb3kLf+MY35sSKxWLShiQDvBgg/8BPCo899lgyj8VxHBVzHCf5u40B8OMA+QcuJfZ++3x5JvOwXWiblwEiou985zt0xRVXLLjM5s2bqVqt0ve+9z0ieu6tcnp6+qXYPdDiIP/ApeaLX/wi/c3f/A392q/9Gr32ta+lj3/84xTHMZXLZfr0pz9Nt912G3V1ddGWLVvon/7pn4iI6KmnnqJnnnnmEu85aAWQf+AniRtvvJF2795NBw4cICKiz3zmM7RixQpaunQp3XLLLfTZz36WKpUKRVFEn/rUpy7x3r64tLxtyR133EHZbJaazSatWbOG/vZv/5a+/e1vz7t8JpOhf/qnf6IPfOADlMvl6Oabb6ZVq1a9hHsMWgnkH7jU3HHHHZTJZKhcLtOWLVvoa1/7Gt1www20detW+tCHPpQMkb/1rW9NJrZ/8pOfpF/+5V+mP//zP6err76aduzYAbkaeEEg/8BPKgMDA/SpT32K3vWud1EYhtTd3U3/8i//QkREt99+Oz344IO0Y8cOWrZsGd1www00OTl5iff4xcOJoUsAAAAgKJfLlM/nyXEc2r9/P91888106NAh6unpudS7BtoA5B/4SWB2dpY6OjooiiJ673vfS8uWLaM/+qM/utS79aLQ8iMDAAAALo4HHniAPvKRjyRzWD7+8Y/jQQy8ZCD/wE8C7373u2l4eJiq1Srt2rWLfvM3f/NS79KLBkYGAAAAAAAAaFPaagIxAAAAAAAAgMHLAAAAAAAAAG0KXgYAAAAAAABoU/AyAAAAAAAAQJuClwEAAAAAAADalEVbi773N9+ctONIGxBFcZS0g2agYs1m+LxtIqJmff7vhSF/nut35Dxv87mP/AdnzvdcteTz/51I/ByKokjHxM5YI6YFY8TriUiv01H7YnbaCUXEHPdQHL8wmDf26H376HLnxhuXJ23H1cfB9cU592xCyM86ps6ROV+uWNamURxxvriRp2JRIPbFXF5ByMuGoUwyu18iFOtrJnb4e15a520qzev3U3q/yJM5Z9YpfmFo8iho8LJBqI9E2OR1hoG5TsTv27f3HLUCN63pS9pO1FAxR5w0z8mqmOvxuQiaTRWbafDnkr305TpcnSOOn07aDdN3VivVpF0324sc3he5OdtfRbIvc3WeeeL32O8FovOMzaUol3UcHQxDzjN3ge3Z/lh+DmwOyusovPxN837pV/5/SXtsbFzFahXOR9fTv9XPcHvZynUqVpopJ+3KxISKdRY5x3IZnUfr3HrSzhw/rGIFv5a001l9njPd+aQdpjhWyOtrpqu3M2mfL+tr7UyFf1A1pQuRTVR52wfP6+9likNJO6jra+bc2ZP8wfS5tRKvJ6hMqZif5X1Ztmm7im3evC1p/4/f/QW63PmVD75TfNLXqDzLjUAfv1SGz3k2l1Ex+SzZFP1YvVpWy4UBxwod+pwHYh0Rmftxg89dp3nuoojXWZHb8vVvy2V4nx2zikqpJPZRx9J+IWlXJ2eS9vT0lFrOL/D6U2YDxTyvY/jcBRU7fuZ80j4xou+xtYCv19Acy/nAyAAAAAAAAABtyqJHBqJwgaD4F5DjmDdG+e/52LxWxXI5858vsZ4FSyHE9mM8b+x5/vDDDaiP8p9PF/Xf/wVi6j9t9j/86rgsMDIwZz/FaEOoj638T1sroP7jPucVVo4Gmf+yy0Ek859K/a9Rsz2S59JsTf73M9Y7I3PHMRdNIEbG1MBAZPNSXhhm2+IfH5H9R4f4HJh8cGTQNV+UvzWyIxGLu57mHNo5B/vyx/XEiJCru053oT5K/LcnldHfK4rzGdf0fzIb4r/ZkR2BkufXHOtcPsf71dDbq4n/2oWhzQNG/nfe8fS2ZV9tc1cOYETz9be0cN9p7wWL73P1NlouBcX5Kk1Nm6AcrdHXcKHQnbTHzo+q2NgF/m9jhxlNzIS8jd7GlIrl8mKEMqu312iI+1LNdNYVjmWKPBpw4tBJtVgux9/rHuhUsc29/bzcgP4v8XSD/5MalPR+VX2+FoZHp1QsrPF/UqNA/yc1bopRl6iqYiQGTJb29alQ3NDX8+WOvNbDUI8UpdOppN3T3atibor7IztCF4pczWU5H9JeSi3XqPOx9H09iiTv+bW6PuaxiAXmhlmv8ShSIHLDDKZSLs0jG1ZtUsh1JG372xpi5LzW5JE0N6X75HSaj8/Y6IiKyb63WCiq2Kql8mFAd3ZHTp6giwUjAwAAAAAAALQpeBkAAAAAAACgTcHLAAAAAAAAAG3KoucMaD2mnRfw/G0iqyU2OmahpbU6Uekg4TgLuERY4bRcznxerIRU74r5BQtsT217jrZV6MzNcdCrnN+FKI7tcViclrYVCJpCU2yNcqR23ZweNWdlgQSYO51A6qL1Sj2X9YxWJyidoZqBtheo1+X8j/nXL68Fz+h4HeVypDWxUtMZBfPPPXGs8FF8jhaYP2OnocjfPiffWiv9iIjIF7pSx2rlF5j3s9A8ppxwVPEdrZOdFW5rZeNUITc/x31HfHaN3p+EO5TMz9i69IgcXGj+x5xckvm5wEQzmy8y5+29QF4fc/u5eTfRcnMGThw/nrQnRrXzT6HA2mVjPEX1CXY8qRoXnfUrVyTtZf1am187xS50rnAuISKa8Vibfb5eU7G8x/vS35dWsVqT87HQ5OupZOa2VGussc5l6yrWXZhM2qmK/rH9hcGkvX21/j3ffHx/0r5wRu+zyqNIby9q8vGLG3rOgCOehRplPdfgdKlCrYScJ5Xydb+Szojz7Nj+iGOuuXlHwpUtCPi4R7a/Ew5+taoW9WdyrKXPZXW+NR0+J82qnk8ge6eGcHWLzD5eOMvzbJo1nRsDfTx/xc7TzIg5EJkCzwuIzTyabJZjxa4eFZsSbkV9PQMq5onH96BX/7Za7eJzDyMDAAAAAAAAtCl4GQAAAAAAAKBNWby1qBiXniMFUsNC1mpRSiPs93hFdqh7IZmL3Bf7PWW5t4BOyFmgGNVC+7FYaY6VfoTR/DIhs0Xzaf4hcmUtukAxnpZA2YAa60El2TBSqoWsRQWeLeokZRKxlbDNf9nEwuIrNPuSFgXR5C4HC5zzuYh9MfsVaf2c/tocO1G1QW7aHAud513Ofp57aFtPJyT7OdcMhbsL2WiKdmSkftKSNOcZ+WVeDi3r75WFxMcxfaD8bGM5Ydnni3WEplCQlAnZzFlItiPto0NrJb0AVhqkVrnAvUDG3Bb/11a1wdIWKTsgIgrF8evq6lCxblHUKNPQx3nVKi5Ctrqoz9fx4yxFyvdq+UV9Slg9GtmDLFx4qj6lYv9/9v48SpLrLPdGdww5Z1VlzdVz9SS1ulvqktSasC1kyRP2RTIgY2MuRiDs4wW2zwLsa9Y6wAcHWB/rwGGZCx9w4Aj7esAcbGHLGONBGHmSrLm71a1Wj9VTzVNWzkMM9w8vxzuUKl0t2pIr8/n9tbPeyMgYduyIqP28zxu41M9yPSTv6O6SdpTlZZIlFZXlbrdH9qFpW8lVHFr/gNofq1GM2qGXFrGA6UtVzSkhifE8fc+nbbugiq+lcwOmnehhEpaGsvDkg5y2OW8wi9WYK+0xueS22SQJlqfGo0ScJDdei+euRkPqi7jtaCKTEbFsN23LzCwV8atXlRRogM7jzNSUiDWYRC4ekzLPOLORTrLr1Y7Ja4kXK3MdGctmaB1xV66/6pMEKpeV+3bL9WPmcmnz4RMAAAAAAACwGngZAAAAAAAAoEPBywAAAAAAAAAdytpzBpiES+s7rZDeKUKtqWP2g5bSOIuS95bONeC6VLktFjeFaiFNDs3qOnApIG/lT6diNssZ8LW1I9fwGxVj32spvl7dOm+FPJfHlNXhCse/dY7QDa+QKbfQFPNTrmK8y/nKIjTF9H5GrT/J9IuJuNTuNlhZ+0xcaSfrpEUsVkkfaSuRqswvUf2Bb8sKC0Zmz6hzBFZPqxDBFUeyRf9rRZu5OhpjjAmYvtVVtq4OT1XSmlZufdtinAvURRtz6HNfRmqj3QoJTSu+tNrzmQVgqDTVSdZnYmw5X+ldQ7adDZ1P0CJnwGE3Ck9Z6/rsOOgu6GgL1DVi859vszFPk0jRWKPHHYvZIYZGHkunuz9q96Tl98anLkbtqVNPidhmMxm1N2zbJGKLIf2GG0r9uM2sJIu+tNt0Y3SSYszCM6bG2A39tJ3phLKjZDak4ycvyZg5H7UbTXmtjbDtXErKbV70aFlPPadYLumxrZi6Flgftz11HSrL1fUO1+3XVR4HHxP0s4fXJJtLJy217XL8oGMbBPJYxuL0vRTbDmOM8VjfqatcBv452yd/m992BwfItvPipYtiOZtt1/ZtW0SsWqZ9s/VzMTsQySz1Z9eT/XJugqxLS/mCiPWwvJpKSV5LfHzdsGFYxDZsGjGXC2YGAAAAAAAA6FDwMgAAAAAAAECHsmaZEJdR6KqTvNKk11y9KuoKeRGf2mxlJaqsqiyzuvbDbmGJF66ilVhha2etPvfM355WyHbYMdKVXIUlqZ7P5r93GXZ8fOe1hWDbzZm3koO1sMZs5S0qihOvsIqkzxk1tZ5Oki1dV1ZWuWwkaHqzVi6JWDzOLOrYNKinJWWsDzTU9RQKp8/Vq/62rL7dqmussG1lfUxXwG6xmnbEdpntm6pE6rD+o+U+HF3p17f5eLViQImaiZjsn7ksTZVbqipmhY2Xnq6gzuQd3E43rqx1uUzItbWMjdlFK3lHk1UKrTfllL24N6ywp+YdW0ke2baF+l7QQibUfv2TnQfVx9LMPtS2pIyC3+Z3bO4XEafIqgCPy3VmPOorQUMe9xirxh3Y8jxXamTh6cal3KO/m8bLHiZ9S8bl9RTj57wpO4ufJ3lE2pUWodU6/XayKtf52h2076/dLOUeXztCVqZPn5bjtsd+I1DXvc1keJbRUrf2EkuWSqUWUdrXpqckROy4cNvZ70e/j+PSOoaGZT91HerftaZcB6+43t0trUurZS7/kv27XiUZlxtSf07E5WNxuUzSnbibEzEuWW8qW9O4oeeGBtvvpif7RTzBrH/dhIwxK+jlwrKIZbvJQnjrts0iNjIkqxWvBcwMAAAAAAAA0KHgZQAAAAAAAIAOBS8DAAAAAAAAdChrtxYV2n+tHWa610BqnDmtSs7rGNd+O456Z+H6+1a5Bkqfu9qySi4uchJsW+lX2cIrrCqZ3joM5XHgWrmVem4uXn/RTXxR+DFbYVnYZopZoY8PteCYN+3VQitzPJi+2XVlGXDXJt1tOi51fF1p0iUODUhLrzqzk5usS31pOkHaU5dpTfUVw7Xp84uLcv1N0od7WsO/enqE6GMrjG25NXAL21Z9/YhUlxa2t+1CjNtvKttCngtg2S0uYlvnprBxVdvIso9NZdNpx2jo7s7I/unUSaddVlrvOts0m40ZttKgi11wlCU0u6r0pdhkmv4VeVOs3epesKKfsd9TKQPyal99WGgL+npJB6ytgweHBqJ20JQ5JNkmWRdmxqUV59w5sg8tzE2LWMCsOCv1OREzzPa2VJNa8u4cjY/pbJeIzU3NR+1qnq6nLRuk9j/GLDyL+YqILS3RmJhMy+8NjVBOQm5E6qbDgMbmASXvf8u1u6L27KS0WD1TWIjagSe3xXLpPpHM9YpYIiP3fb3TaFB/aHX98nwSY4wJWW6oa+lrm32PWdLu2LJNLFcsUS7IybOnRSxga3FjMr9P5JA2ZP5KYXEpavss7ypU2+ixXNC8uh/H2HgeU3p/r87yBJgNfbUu7/g9PdRPEq76bY+2y1IW5L29uaid65G5i/HY5Y9+mBkAAAAAAACgQ8HLAAAAAAAAAB3KmmVCofA01HZ1NGXpq6q8Usqy9qlhXp14hRMns6DSUiD+Gyumqdn0z6rFiFd81rITtj+u/KLHpk5tW1tocestOV0VvuhS39+WNR4/ZaTq2C+touePLOKErS4/aFWNWOO6dIxScTnd3JWkaoWZlJQQ9XTRtN7wkKr0x/QVMUteXukkTYtXKjTd7AdSTtRgFQqzSbldk2wqv9iQFS4DLk3TFrX8mGnVnc+lQKqP8WtIFzVuISFqJd9br3ALO6Mq5lqiwrik1TXM5Th+i2Oox1UT0hjiqm3pYf0sZuQ4tOzxqWv68XqoKhzHqc/3DQyIWI1NqeeXlmSsSX15RVV03tbaTEarvrSyevuLr9+YHyDXWofs3Lk9ak9NSrlPkkm5rt0lpYuJ2dmoXT91VsSsJlU1jWXlOWlWWYVqecsyhsmBt4/K6sRbd9Ln8YlZEQsc6h9Bk1Y60C3H0aGRXNS+eEFWhK1WmdRIVfm9OEuDVDMppRMZiyQkZw6dEbH0BrJm3JyRA930MklDlpUPdMgq43qOrOLdr2RD6x1+v9TDO39e09XEuQS3VpVVdPNL+ajteXQuA3VeN24citpWKGVwfCyplqWtaaNCfSwZk/djj1nPNtj9ONsj5V1ujLZ/qE9ansaZJGpyckbECotkBerzZ42MtD/l1ZbthByzYgnqU5lAWgYnmFV5TEk5Y3HZF9cCZgYAAAAAAADoUPAyAAAAAAAAQIeClwEAAAAAAAA6lDXnDHCpptbiczvRVtr/l2ot2qrM/Ip1so+Oetfhq7TttWnxbW0FyLVxttJlMTlhVZVoD/lv1LV9lBJjr4LeTv55hZK2veSyxuIyRL1vWufOQ6ztKg1x3Kbu39Ml9aVbN5LudWhYanCzLGegq6dHxBymjxwellpah9kBLk5PRO1qUepqmz5ZlOmcGJ4X0JyW3/OY9jDQ1rYh045bq/e3UNvxci28r6/7FjaS7ZcyYCw+lrUYF7Stb0ubZL5O9Xv8e/raD5hu1lJ+mzH2Gz0pOUZZzHbUZ5rqTVePieW6+0nDnUpJrarXpL5UKBRE7MTx56L28ReOyt8WuRMi1DLXRxyHVZdqf3yfznlCaYKTFp2TvlDmcfSk6JxXhuU4t6mXPge+PLpzC6TvPnt2QsRyORr3du7YLmLLZdLYT05LK8YKG5YGmCVuV1+fWG6+SePoqQWpH88z3Xmg9Om1KvX9iYvyONx09c6o3ZuSuvCpBbJHDWsyz+bG7ZRPcHqmKGLTNfp9T1lJp5KXr9v+UcZmeYj6uYjTbMpnH37dnz0nc1aWKyyHgPXhmRnZ3zZteX3U3rhxg4jNL9EY5DflOXCYPa72JU6yvKgkywvo65e5Hj7L8ezpknp/bi06XpO2sx57/sx00zr57xpjTMD626WJKRHLZCnPxQlkvxzdQsdh2xaZc1Op6ySfHwxmBgAAAAAAAOhQ8DIAAAAAAABAh7L2CsQ+lwLpCsTs8wrbRz7VrW0616YlsJW8IzB8al3Z13H5j9FT62y63uXyJf2DrAKxJachN3SRtdS+jXJ6NMWsqp46d1LEjjMJRzyU0+4cX3u4tZhab1l5t81s9WRJ1JU1nFcL8e6YjsvjPsgqem7etEXEdu7YEbV7elRlyRRN3VmqQnW5SNOemW45JZ9m30s57JppZMRylk12ojVlsZZI0j64rtyfS1NkO9rwpP2aqGarpht5dXGjpEBcGhSoadagpbWoaT+YdaDtyKHTYTIsW8nWfHHc5DEUFTJbVdDVEsGAbYuS2IRNGqutuNzOXB/r89e/NmrvvelVYjmXScnm5qTcIpWl/hpPyqqbW6/aE7WXa3IsOzd+Imo7lpSxiV1QNqfidqNlqOx4rqwIb9qKxQWS3MRjUoIy0k/yhUQwL2LdzBpZV+Wt5Wm8anrynExOUdXhsqoy3BUnWc+ZSSnp8FiV3qqSTpSbdFKWLepHc7asHPut4+ei9sVFuV0Jl6xu80tyX7t6qT/Wq7IDJCbp+O0fljKhcSb/WcrL721KUs/av3WziFWYfCps5EWsWpDXTTvDpUAx1TfLZeo7PQM5Ebtp/21R+/zEeNQ++ewRsVyV2WjvvXa/iBWLzK5WVVxfmiJb2qXFvIhxh/dale6X1aKUgmUz1DebVdmf+a/1ZKUNeA8bJzdvo+eJS+fl9bKUp+3yq3LMzLNnyt4ueY04zDa6LyflS0/9x6NR+y1mbWBmAAAAAAAAgA4FLwMAAAAAAAB0KHgZAAAAAAAAoENZc86A73Odsdbp8w/ye6J8vBJxrlXVHqpXFkfYla7+PuM4WpdKnx2XaXWV7tsEtM6dvRtF6Lq+bVE7lZe67NlLpAXbZEsdeD5FOtjpIC9/jul/V+RjtMgZsIRFpNIUt1vOAGeFDa34tOrXQqXlHhkiy9BtW7aJGLdPXFqYE7FEirSBobLwrJZJ41fIL4vY0DCVVI+x8xMorW4sRec1rsqMj7Ky7Nzi1BhjUkdJUzg5Iy3KCnXSQfp1ZYHG81S066jIC5Ah4f7bZvrsF4Pb6emcAStYPW/FZv9z0bkV3JbZKNtRrsPVeVMWs8W1PbVONmBWVA7I9s2U53TVtTdG7VhKjld+lfpuVtnp2czWMsssJo0xZj+z4XVj0kLvc5/9ZNQ++YLUBPP/S2nbQpHTojooHwJX5Ay02RC4vETnZGhQWnHm0sxONiZ1xz0OnQfbVjkrDbqHVWoyViow7bQlz2WRPQ4sLch8goEe6kvJdE7ElpjmutCkEzRdlvfSJfaxHMi+OblE63CcIRGr12id3Vn5vXiS9sFTOStNdn3Fu+SxPXOJcrHCrLRKDQ2tp7gkrZ7jCXltrHeaTepXrivHP37NdqtcuVqDvmc15XHvYta2V+WuitrDalzZvWd31L5m714Rswyd17Ah8+HGn6dYQ9ltzs1QTsepE2eidkqNd0MDlDOYSkjdvlcn69LAk+ufLOajdk+W8vs23nSjWO7LD305avf39YtYoUTXfEnlMhSWWawgY+fPnTeXC2YGAAAAAAAA6FDwMgAAAAAAAECHchnWoswiVL9CcCXQCikLD/o6SE29SjY17KhpY5dN0beqXOzHtCyJrYfZK9qutMLa2E1T3VclZPXZxgxVu5vML4jYsxdoamZ0u5zKunrXrqi9cPxxEQvYtgRKE8XtUPVxl9Ppal/bbI5cqita7ZuqMswqVMZs2d0T7LynYtLOsFImyz07Jg98g1Wa9NTUYL1GFmhaElJhFTe7M2zaXdnJNmu0ft9X1RzZddGblraON994XdS+NCPlbUeOH4vapQk1hcilQLri8dqKY3cEwsbYlv0lEH1LjnM264Mrqrf7q1tjOq2+x+VprtwWP2Syw5jsI30byELXYxVtw0DKNNLMJi8lHfNMg0mblFrAdPfQFPuB68dErLBMNpAXL1wQsVqJprnjSl7Ex7JGXW6nvOG0t1atziQJ+sK0m3T8+vvkSelmN466L62KXSaXtR25zkSC+o7ryGM7z6oTl5WN8eRcPmo3LD2u0j7s2EQSn6t37RTLjc/S+mdmyiK2ZQPZNM4tSvvODRuoEms2pm0mSQoyvEven89euBS1ixV5jArs2ltckr/nxekY1Xx5n1ick7Kh9Q63DG1VgbimrtEYk9ZMnD4nYs6zh6P2TbceiNoHX3enWK6XSWJTaSnVcZkk21dSoF1XkbzIUpLJx+bJfjPJnk2HBgfEcr1MstTTJSVQZSbPicuubqo+3cdPHCVZ5FV7DojltjC72uWSrKDcYON8LCP3u1yhfT1+QlZ2TmekhHgtYGYAAAAAAACADgUvAwAAAAAAAHQoeBkAAAAAAACgQ1l7zgCT3614g7BetGmMMSZkVnBaQ20xPaG2CBVaRqVP4x9XrJPrRpX+Pm6TFnXTAGmqrx69Wiy3KUuasZNPHBaxUp30hIlNIyJ2PbPnqyit5IX8TNR2lYWgx+wjnUBZCLbKx7Bbxdo5Z2B19F7HWX7JgLKaG+7LRe2K0houMLu8uMoZyPWSHi+TkprsuLCplTZnjmEWa2xLXSmRNo0G6QYTrtwjm+nDPZUD0cVs/NI9ORE7f5E0sUFDatq5m62vdJXS1rHD4TagKmfAuKwfhFJzzI/gyjGQr3/1Y63zpvjXLJXz1AhpW3bsvU7ERnaQfV/IBpfhIWmnGLJ9rZSlFS23SnXVtWGz/uom5bUxupP0uyMbpZXv+InnozbPlTBG5YF58pqyRM5Fe415GlvYycpcIrfJxoyEsn1kbUfll4gjFkqtd7aH5eZNy/ExYD+/XJPbsmzRehoqT3BHFyWg7NxE7XpZ2jfPL1I+nh2T+/OTd9wRtadnpIb/8BnKC7j6loMiduYp2ocXzl4UsU0DLJ8rlhSxkk/Wkt84I/d1go2ltqX6ZiiXXe/wnAFtLVqpMMvYxbyIpTK5qD3QJ61gXzhC173L7o/NsswTuengDVG71pDH1QmoT7vquYv32rAmx2WrSf10+4ZB+k4g+yy39944PChil5hVblXbHrPfW1okG9DHC4+J5fp6N0TtbE7mJCyVKUc1oe45ToKWXczLXIN0StqjrgXMDAAAAAAAANCh4GUAAAAAAACADmXNMiHP43ZyWrZD0ygrZTsBW06u0xFSIDnFy6eKHSWHkJVP5dSMz6bak7bUX+zbSZZO+0evj9pxX04L1pi1Y7xPTgs5VZpaylrS6mmki37vfHFGxAp5qmKoJT0OO552oA4StxZV37OFTEhXhW4zeQc/51oSJdpyv/kn5R5qamyKb2IyL2ITl6iCbyolz3O2iz5vGpHyisE+mvru7pYyCdvQtCEvBOpqm0rW9211XrlcRE+fc0vS4pKUdnALNE9VrOXXjJohbWnWKC719lZoGGOM8Zo0Pe2sOC/8HKqOxo6ipfVuvMqwpSVa1EkcNS3P5R6B+r2NG0ej9tUHbhAxm08fM9u6Eqt0aYy0Q42pCyfB+p0dV3IBdk3VlRwt201yix979R0iVmfWosX8vIhx/9IwLiVRflXKV9qZrjjJHJsVKaOolEiiUiopKZBN58HxZYwfzbQjx7ktW0i+cGFOVQheYGOGJy/+FJNm5tQjxs27WQXsXWTb/fhxKdtxWdXhu24ZE7EN7J586uS4iN10M1V3Hd0t5b/NJRrTGxPfFLHXXEeytZ6YrH47V6B9n2/ISq8Lp2mddTVaBlpKuM7J52mM6O+XlXL5sOa62hqY+sDIkLS8PvnC8ah9+hhJvDYOSHvPY4cORe3uLnl+BnLUj3JdOfnbIV0nCXVz689RHwuZtC6hbDk37yBb+C5VGXniEslvk0k5NnE7+fzzp6L2paWCWC6w6PlzaIM8Pr399HyRceXzxJYto1F7blba2B554mlzuWBmAAAAAAAAgA4FLwMAAAAAAAB0KHgZAAAAAAAAoENZc87A5hEqAT49f07EPGZzFtP2R0xvmlBl5h1mS6ctz2y2HsuRm2kxLa3XlHZRiZA023t33CRioxvJ2u70SdIozkxLW7OeftIkbt8sLfA2Mr3a3CWpc1zMk26r7JREzEow/a+yUbWYnaitbPUspnPTdqEih8BS5enb7DUvbKFe53pFbYVZa5DecyYvtXqpC6T3LC1KLeiFaTqX6ZjU6vUxvWQ+vyhi24dyUfvq0WER43Lteo30hXVVvj3LtIwmIe1Q60Va1rLk98pMu3v+vNQQzsyRDttrYR/a0kpU9THeAa0V3rZtlrNijLGZVWzgSa06H/a0vp/nDAShzmnhn6Wm1eX5ULbsgw6zE/WVhXL/htGonWB2s8YYY6WYPaBN7arSoMcciiWUTZ3L8prspjzvNWZx2WjK/QmYRd/m0e0iNrp9Z9Q+flRep4bbaKr7hGH5C56yHW03nBgdv0JZadcLFDt9Xo4LXRYdv+GMtC5MsvtNXeVfeGws8NQ9q8n6ZlJZ2w70Uu7B1j45fiUCyikpVWgffJXj1mC2nHNlOcaeXaL7bs/2XhFrutSPTxz+towt05h47d6rRGznbsqP8Jfl8aswi8gNPfJaSLN7sqduuvH4mh+v1gV1Zr9drchj5LCxxLHlfWJ5ma7n8bPnROzsaTqXg310Lit75POTx2zBCw1po+lX8lG7nJD5n1uY/XtPVuYCNAboWmiWmB1uIM9bLEvLdY1ITf/O/ddE7cnTL4jYuSl6rqxb9OxbashxqjxF+aXLBZnrl0zStmxi1szGGNPbQ8dkYkqej2rj8sfCNntkBAAAAAAAAKwVvAwAAAAAAADQoax5Huu2sVdF7dn8DhGbmLoQtQNXTlfkqzRV4iorRId91jEuO9BufBk2fTnIqrcZY8zWrWQfmsvKaZVTp85H7SKbZt2yY4tYLu3StFBPl7S4GughmVC8LKeyltl01UQop7qtkFmlKjmAxeQdlq+lQGt7X9POjlq1sd7hiolWkiG92x7rPMWamp5jnx1HyjDKDfrB2UVpE5tK0lRkypFWY+OXaNlGSVbHvGYbyYuGu0mK1mfJqefiPEl6rLScEk051B/rShaxzCQaM/PSnjFfor7KLSuNkVWHW1XIXaEE4jKhDvi3AlcBeE0pqfDZcXNi0qKRSx5DX3m3cntl3a2ZBWzDk+cswfpgPCF/r3eIxkRL2Y6m2Dh7/Ngx2q6m7EsH9tM4amLyt1NpulaaqhporcDGRGUD2mD9LpmS0/kbNtH0+7mzJ0WsXGTH2lHjY4K2xVf9Wvfz9c70PN1na+xeY4wxG7I0DnUpS+0pZhtby8l1bmHV1AMlQy1V6NzmS7K/l9lp7++X8ottI7SeDQNynYO9dJ4DQ31g26iUE2VHaEx8/uSkiB0+TPLOnh4pezp3muwptylJz61j10bt667dJGJhkvZvaU6OuXNFkm6Uq1oewwaFUF5DlaKUN613+nrp/pVMyjGnVqNjNDe3IGLHT5yL2qdPn1bfo+NZrZL9+j8/9BWx3I03kE3s9l3ymW/nVrqXppT15/wkjQFpZdtZYlWTs2nqfxk3LZarFvNRe3lBjmncdXmwPydiM1x6zKScfb3KunaSjpev5KelZRpPL168IGK9rFpxrS7l8tceOGAulw64hQMAAAAAAABeDLwMAAAAAAAA0KGsWSZ0/NizUTumZA3dLk3TWBk5DV6o5ulDQs6Du2yK3FFTlHzOPK4cTvZ10zTR9n4pBfJitC3PPndExGbmSLYxdmCMNishp1UXZ2naJvDlNHjdommclJqaaTTIyaDaJaeokx69d4VKKeC4zGlIOb0YJhvSTi+i+nILCUc7wOUroSpBzD9ppYWQbzirV4j0AnW8akxW05BTwwv5fNQezMlp6mE2bR3UpONHYZn6y1Cc+mIsI6cer80djNpFI/sYd1OpVeV09uGzZ6P2pYlpEePHQbuuyOPZSiakJWxhi5hpO3hVdKMcgwKfxgUtIXJjdH5t5TgSiArEyimHyVy0yVPAnNn6RqTkYcOWzVG7aWTfSrFqoOeOMzmOJwelfTtpWn5gdKeI8X04c+aMiH3zm1TZddNuKSfdtW9/1O7OSJnB8EYa00c2ShnAuZMkuXTUMQqYI52vJFi1mrp21jnFGZLH9PZKac74FB2jcklVKmVjUn1SylcTdbq/9fQoeUSTOl1ZyciKAY2J3WrMcAJ+jqT8Z/NmclhLMueXqurfw3Xq31lfVrtNZ+icJxJym0fjtKKNamzeMki/l1RS3QSrvmypa3uZSYon2NhvjDFl1ucCdRP2qlJGvN5Jp+lYu+oY+T6dr9lZKVF94QSNEU01NvIbRZP1o4tz8t5ZfoIqFT9/Urr2vOk110ftnXe+Rq6fOQNduiQd9i5emIjaA0y6s0ONp9UFupdWSlIC1WB9o69L9vVUnEkhmRNTd1pKJIeuoUrFQSDvD5MT5La0XMiL2KmzdFxDNS6O7pRuWWsBMwMAAAAAAAB0KHgZAAAAAAAAoEPBywAAAAAAAAAdyppzBp5/4ZmobSsB6+YtpHka23WbiMVStOzE0lkj4ZV31XuJRVo8VwmQk3HSrh0+LK2qZpr0G8vK9o5bY128xGxGK1JbWquR9j8h5Zdma5q0cVtCmRdQYhZ8XkpquOJ1+tz05L66Ln0OfKUpbvGplda73UTb4lCr4y4Og/K4jLFclC1D0ia2N0cVD6caUt/JqwzH3GURSzLtZCIl8016M9RhElmpi3aZBrxWJg1h3pfWeQ3mSDeSkNvctZk+e4NDIha7QOu5MPGEiFVY7ouj7Bl57kmoc0/4ckbFWuYMtFf/M0buk6MrhbNr01f2rDxHIx6X/YVXFQ+1P6u96geT6aN+sG3PXhFL9+SidqUmx0Cu2U3Gqa+GltSEd2UoL6y3V1Z5LRZJJ3vypLQBPXGCtL11I/XBm7ePRu24svLtG6DrbdtOWZ14+tw4bWdDVaplxz2hBut2q0g81NsXtbmVozHG5Juk4fcbyrrap77a7cuxczurFpyy5PGbK1BeU6Eq75F1ZoFYq6l7lk9a/eEhaec4PEznOc7GofllqRHnleOzUmJtXJvO63CfzAsIKrTvzaLUri/naYzPZOX+JON0PbmOPEbNgH5vqSjvBQ02dq4cA1UO0DqH5+RUVb5ajOVFDQ7Ie9bwAN2nZualTXeNVRMOuZ28OnYLrCp0zJZ5UM06jQlnT42LmB/Qsl19crsKNZb/ySxOK6q6N983nQ9msdyTUkUek5lZupGXC/RMebXS84+MUJXkuTlpRxt61E+X1TVSrtIYsGHDZhlTFeXXAmYGAAAAAAAA6FDwMgAAAAAAAECHsmaZUNOh6ZBESr5DLFbIeuni+CkR28cqWfb1DIrYqcnnora28Iyx6pUxW023xWlqcJJblxpjTk5eitq9OWlJVm/SFP3yNJuOseTUvWHb4jXk1E/Ro6nU6bicVs130zZbrpyqtdkUm6tiMSYv0jIhP6Rt0dVhuW5Dh6wVtXjXN3zftQstl0tx6Yoxxgz1kQXfjQf2i1ihQMf69HlpO5ZlkjJX2ddtYvKczYPDIpYKaCp6gyNlQgOsauNghrYrr+zqvnDo6ah9w05p63jDdrqGSnF5+W64Zixq75+U043HXiBr4GJJTnXzKporeo3wFtUh60UX6wS0JMBmsqFAWVzyvqtjtsvGHtV3fbGcPNdb2VTz5u2yj1TrNOVdU7a4zM3ZXH8zWdjqMZYXQtdVQ5Mp6sf9/XKMHWJSvJFhOd57bFscVx4/j0kx0hl5vaVZteVaU94nbPb/LMeV+6BlQ+udGpM1lMryvsQdaysVKY+aYBIiLyv70aY9Y1E766rvfYfOeyOU96W4S/e6QKmxuDQj25UTMX4tuKx8a7eyNQ2S9Hs1S8pCZmfpeaPalJKe3AD93mJVyi9tdsNUBbBNk9lAFwtSjuEzSVtd2YKHLYSU1gph5fqGW/Xq6t4xVtl8cKBPxG6+8bqoff7SJRE7fopkhrwicBjIA91glpuLS1IiNzlLdrkH9krL3TOnz0XtPk/2/WyWVd9m/XJhcUks199HMsl6Q3b2gMmZyip2+hJJopaLdL1uHJbWyd3dtB0LM/I5JJWkvh9act/SKfqsx+HZBbkPawEzAwAAAAAAAHQoeBkAAAAAAACgQ8HLAAAAAAAAAB3KmnMGfKYpbSprJ5/Zgp69dELECsukT776KmmBd8OeV0ftC/PSdnR24VzUthwp8Dt+iko0n7p0QcS4PZ8umT01RRrCBMtJcG25XJJpT21fajMbTdKEzyqdY4mVSV9h0cg0xY4rj18sxjXF8nsh1xhbq2uRV4i220zD3Wp3uH7bVq+3w/2kXxwZkvr+WmUuaqdcZcFYp8/dyttuCysnvrUoNdndzHlsW0xudU+Ocg0arG/WXGlzN7xtW9QuDOVE7LGpKYqdl7aODdZ5do5I21HHvzpqP3H4KRHj6k9bJWTwz9r9l8f099oRris1yp7VNnR9u+ri55Z8flPqSi2H1ql19Fz73TXUI2Ijm8hKTjk9m8VFbqko1xljY10Py4tx1Fg5XyAdrlkuiNjQBrLC275nt/zxBB2HhBJmx2N83JOa41qd9rVRkprthEPXYtWsnjOgc6rcmBxn1zu+T/uX65F2r01m9RlTtozlZYrVU/I8W9zqVon/+4fJFvT4pLReDn0as2xLrjMM6byXi3Kd87P0PBAboX1IpGR+VYoN5LGk7CsZloeQV/r+QaadHh6U2vW+LK0z4co8wXKJ7vOTE3MiNjVHsWpD7msQ8PFRW4m215jIn6f0tRaL0fHMdcnj0MNyfjaOyHPS25uL2mfO03Pd1KR8rquz8aHSkP3h2RfITnTXbmlLPMGsOmO9Uqt/1dV0n82wXL/SnLSkjbNcnaov7/dVdr9PdEnd/okJyhm4OEW5ANWyvN8P9bFnlAG5jkqV+ne+InMlkqx76WfYmH4AXQOYGQAAAAAAAKBDwcsAAAAAAAAAHcqaZUJsNsyE2kKLWYTFMnJqOF+n6ZHHn5TTb6+9856o/ZY77xWx7z71SNR+7rtPi9jxZ+hzKi2nFwcHaPq8oWz1ymWaCgp9mkK2jZTf1JnkIaukHrU4LWsn5XRYg02VaVMxLqOwlByAzy6ukFuwYKje3YRswZJTZ+2m2uAVqrV9KK/iGnflMerJZllMyga6mPxnzw5ZKXORTRWGdSlN2LpEU90jFWnhZbNtW+yR18LiDE11xhySmLlq6jEXp7nHxXlZUXHxIk0VlmtyutFjkrbFouzT8R6SmWQSaoqcVVWMqePHi+LqysX8uNttLlMzxsh9UvvLx8QV1dRZLFCaHi4bsgMlt2B9JKMquZZYxUxfWdPWWHXQVEpZNrLfjyeof1qqorIbW93SOJ3NRO2yGmOzrFqxrSoq+6wicIZVODbGmByrmjypRk+uYLJVdViHSWdCbffaZn63A6ySa3eXPK+9ObIZ3LJpk4idPE7SXa8oK8A+f5KkGdXZiyK2VKVjXfKl3MdhF4OuFuuk6dyeviglZj6rgGyHtM5cn9yfOOsP/QOyrzQbbHxckDbJxSLJQrb0S0lKymH74Mu+sZQnOUZJyVAmmMQjkZBjeg97/lgqSsmSlmutd7hVb6Mh74nz80xa48lYV4Luu9WyHC+2bqJxbWiIZDzlwlax3NQ0rf/I82dEbHySYp//6iMitv8qkjF290mrYzdG585l9rtOIiOWqzK790YonyEmF6i/LU/J8396kq61ySl69j17RkqgfFbdu1SUzxPpLG1jrCirCnNpZyYtr59ml7QhXQuYGQAAAAAAAKBDwcsAAAAAAAAAHQpeBgAAAAAAAOhQ1pwzwOWX2r6Rq+/8UJWp7iZ9spWWOr0nnvtm1A49aeF51aZ9tI5rZF5AOqTP+by0garXSbe1uCg1Vj1d3VHbZdpuyyhtH9PBxrPyt4MB0s35XbLcvc+1/6p8e8gOmqUE/ZbF9fA6Zq0a41reNpPHriDOyp0blTNgs2MbV6cyzrTQSWV1mGNlxm0jNbEpdo7OnJB2ubMh00QmZR9IZKm/J1JyO51l0g0m6rT+Wij7ftlQXkBFxSybcgFcpeMtV6nfBhWZM7DcZHpGpf1PMlsy1129/6247u0XX+57fzBth2VzG0vlAcz3d4U9K+u7vhwfuRy/VpXr7GF5AkM7dopYk7ucKv2ux7T56YzUkvb3k70uP2fVkrSOrDB9qnapq6vf4wTM3jaRlLkpHrO/DJSHssOu6XRW6l0zzEazofJkyhXW5301LrRZH8x0kZY5v7woYps3kd1rV7fU2L/pzXdF7We/+x0R+xrLxxvsllrpka2Uf3djXPajE0cOR+26J++zZZ/Oc35O9hWLWcraAZ27el2e10GHrpnB/gERC3uoX/WkcyKWSlOsKy33J8VyAxslmcsQOjSOn5+Tx3aC2aM7KbnO3aO7ovbhI8dEzFe5B+sdcX9pyPM1N0v3ttlZ+Uy2cYhyXXJ9Mo8jkaLzFWfjVndaWmMPD9K4Fapnq0PHjkbtU+dlTkw6TWPHTwxKa3ErTs92n/niF6L2YI+09xwcomvr1PnzInb4ebL37tsgrUurdTpeRTZuffXrj4nl9u2kcb4/J/vXhu2jUXvzRmnjfNstt7JtltbTE8xGf61gZgAAAAAAAIAOBS8DAAAAAAAAdChrlgk5QhIgp2MDNvWnbUc9ZnmZSEuZRneMpkSeefxbInbEfSJqj2yRVeWuO3BT1O5KS5nG4cPPRO0XTkl5h+fTlGUywWyllK1ektlRpgbkNvt9dMgarvwel+3YykJwrVKgl46yhLTa6z0vzSpnrlCksF2Nq93mdpixmOzuXMagY8UySXVKnpLcbKFpxDAjp+cySVqPU5ZT0TPzE1HbZzKJRigrCwbs+vJ1SWoWC5V+w4nRVH5MzjaaRZ/LN2SMV860tX2okKlpS1dtoNveiCOjr2EhIVLfE1IrVZ24SeelpCrv+nFmM+fLfpBmkrdmvSlivOKxtgCsMds/j31vclxOf1+6QDaTXX05EesdpP6/aXSbiHGJUlVVzOTHQW9Xgl1/A4Nyun2im34/KOflOtmxLqjKntoSdb3TYPevG246KGIOGwS/8U0pBXrj6+6M2nVL3i8nynR/3rh3j4j1biCphqtvJztJOnH2jLR6PHPxUtTuyUiJz2yCjY+s+raxpWWjm6CxM52UA1ZvllmZK0lZnFkqOqmciAUFup6aTdlX6iGt8+y0tCsdz5MMamiHtLz0fdqfrrjclmJdXs/rnSqTCZmmlK+OjHCZmpQCOUwmmcqqGxOzl00kaHwoV6TEql6h87VrdLOIeWwdp8ZlX+xiFrV6ODh/kaQ0j3z32ai9dViOP4FPMqQjx0+KWImNobvrUrabZhLigzfTM+uwqh5+7d7RqD3YJ4/PhZmFqL04PyVi+d10jewcHRWxrJJjrYX2emIEAAAAAAAArBm8DAAAAAAAANCh4GUAAAAAAACADmXNOQMu03RqOTrXNfuB1HolAtJNJRtSFxjWmJXUcE7EagHp7U5PHhKx0+coF+DggZtFbNt2suDL9kt7quPHn4vajk2/7SblYYj3k/a6oSRuvvBXlAeCy625hZoxxjS5YG2Fpti0gGvE166BtdrsPa+7K7Z6kO1qTB1MrnW1LXlOXPa5WJBlwAuFfNTeuEFakvUyPZ4dk/aJtQbpSy/OzYrYcpPsGxMO/baS4puQ6a5jjrJgZO3BkS0ilttC1mNn5+ZErLhA+QpuU9n9cR37inyWVUNqw+VOtJlc2xhjTCCsfNVx4h+Uva2Mqu8xK1c/lDrmmYvjUfvi0SMilmO607pKK+EHv+nJfIKFPPXzlEPX1PPPPSeWu3COcghiWWkr2c1yCLbsGBWxgQHSiM9MT4tYnVnt6bEs6dIYHCoPW8ele4ilcmgyLO/HV3laZZVLsd4ZOzgWtR1lr3j4GeofNdUhnn3u+ag9q8aFEaY1rql71okJGr+cmrSeHdpIeSPlsoydPEM653RGapcLLP/KW6TvDQ3K3Ktylcaoglp/90Yaj7MjUj9uZ2i7AuUz7fuUw1JX/ejCNNlhzhZkv7ETuagdS0u992KBtPPhisep9vK25beJpXxexHJ9dN335rpFrMFsY61Q6up57gYfUuPq3JV8Wi6bluvfv/dqWocr+/DGjewZUNlBT1yie+Ke3Xuj9rVXXy2Wm2bj2NxiXsSGNlP/26bGwmcPk/3udQeui9pXbZXL1RZpO85fkpagQYzGvgsXL4jYZ/75QfreRZnzddfr32Aul/Z6YgQAAAAAAACsGbwMAAAAAAAA0KGsWSYUa1EBVogFPKUPYJVQubWnMcYkB3JRu6GqtVarzD6sR0oxGsyy7tFnHhGxriRNN95084+LmJugKZeTJ9m0qi8t8Gw2he068re5/MfVU/7s3SpYIZvgch8jY6aVFoNbkup3N2b7uEJ61F7ved0ZbomndpbNX+oObbNlLXUu65V81J6ZmBCxGLON7emSFT0rNbL08ity2jO/QNUrG3XZ37Nx+n2bSUIaSrYTsilsV3n6JdNkX5dTFmgmRn3T8/Lyt1khbSujvEVb0Mr2lvdbXWszCNur+qYxxtTY+Uwk9LjArlN1NELDp6eVVI2Nq9luKZUoFUm6cOrQMyLmunQOk32DIrZtD1lEWspHlrso+z7Jds6MnxLLdadJGrS4JKUlF5l9375r94pYglkH+sp6tlQlCZ2nrEWbrBLpUkFa8houiVGSKJv1wUxC2ma2m/PtPKvsOjcjq7zyazGlxquzl8jqU1cR38kqnO69RsojLDaaTp9/QX6xTHKG7j55UrLTJLOpKnlRdxedo0qVxsDAlefOY/IILy0tO2ODVLHVHR41MkiypNDIPhbPUf+z0vL4XZolO9HFZfm9voEdUTu/VBcxXi3bZRVtv/f7qh+vc/g90VP3rHKR9rVHVcP1G9Q/QiXlqwgJGMViKTlu9feTPKtLyYSKrB9tHJbS8MEBko3NTsvqxGdO0TjWm6P19zA7UmOMmWDPBtddu0/EbryZZOqprLzuiszq2GYX3syc3I7CDMmQAl/2r0yOtsVx5MV79ty5qO3rsY4961x9/QGzFtrriREAAAAAAACwZvAyAAAAAAAAQIeClwEAAAAAAAA6lDXnDNhML7ZSRkzvFF5NaslKzDpqaMOIiC1ZZB+6vLB66e7QVvaKzHYq0SstqIoF0mx/41tfErFknOyvykXSem8b3SGW62Ma3IWqtJysuOyzfpViurBQi7gCOmhhKA97yCwuLUfGXFay3Xek3jhgv2GrcxJz1nxq1wXZzOr7w9MjbGVt63tk/TY7I227lubpXIbqez3dpP/Tx7ZQpByTRlNq/Gyb+mMyITuIx8qVB012zpWQ12V62WRGWqr29VPfrHvyWivOk+41lVTrjNM6HUd5XwrXWy0+ZHkp6jhwq81OyBlYXMpH7WRK6oO7mV405soDZbewbuWH27FlHkK2m7SxRWZhaIwxh594PGqnmYbaGGM27NwVtYOGzGmpLhVYjLTddUv2sxMXp2j7Y7K/WBnSSedr0oYxFpIGuFSVuVjcdtrz5HYVSkw/rnSzPtMn+2pcDdnh1NdpKtHCjngdMs3sL72mOu4x2temL49tppf65oZheQ/uZpr3U2ekPeHyHI2PvtKIJ9l4UmrIfjswQtaffnNZxIp52ocelnfTaMjxouFS7omTk7lRbt+mqB2mpHWpcUivbisrSdNDv5EcUbk7ObIrT3TJbS6z/Ss1ZJ82IX121DXkuu11D3bZBdbfJy1WXWax7ahknXSGxspqWY5jOofg+/i+PHepOOUQ6Fyg0jKNaZs3bBKxoX7qi1MT8v5//vw5thw9G05mpZ98keVDxFVe0vTERVquKsetKssZyPXS/fi548fEcnGWS7tj56iMJen3tm+XsVKt/qJtY4w5/vxxc7lgZgAAAAAAAIAOBS8DAAAAAAAAdChrnsdymMWhthsMW8gMHDZ9VFRTbE1mObWioif7bCsZRchiQUzuQqKP2U6V5dTm4jxZrDnsPahallIgr4umwPyi3J/tO8h+bap4ScTqPkmddDXMMKQpRK0UcGzaB9dVc2Bxtq96So3pYxw1R64r+K13sunVu6rNjoOl5Cleg6bqzo0/L2J9PTT93NPbL2LFIk0VN9SUPO/v6aSszmozO7tKSVaU5dIZm8m4XFvJMJiMp5tZixljTLqbfm+pIq3rmgH9djwp+0OK/Z5t677Brq8WRTNXWuIGLCaDfjuWIGZUymXx2W+yaupqmjmeoGMfqAqcDSaladRWr5ibSMrp6UaVxprChLQFnT1N/XzrNdeJ2PQ5mtZezlMf7+mS9o1zrHp2/6C068swn9qlhSkRS6Rp3/OLsn/aFvW7rqyqOFskeWcuLW0FJ0Pq1566vrlqaIWdcnsVgDVNtu+JjJSpNVn/S6qK0cMjJC2sVeQ9+PkTZBlaLkqpbsql9fhKRjkyQvKczVdLe1mvROd9alJakqZCkons3Ezjr21k37ds6u/xHin9SLJx23eknSP/ntCQGWOcFPU/Py3H5vQQSevChLyv15i0pbtX9lt+rANllzu/JGUp6504e9ZKqPtSsUz9qlySY2OcScy7MnKcaTboAvZYdWouazXGmIDJrOMxOT7YLJbLSPlStUT96ty4rODbxa6hZIK2cX5eWinzgaSmpI+NGu3r6ROnRWyK2dDW2PX5/AvyOWTPdpKpe6G8N9fYcY0pa9ENm6j68eSM3OaMul+sBcwMAAAAAAAA0KHgZQAAAAAAAIAOBS8DAAAAAAAAdChrzxlwuP5OavGExaCSCjeYD1ToS10gzwXQuQY85iibTIttS2ikxspn2vnUoNTu9nWRvs/2SQPZCKUO7Omj36T11+Rv3zhG5agHhqQ+7akTj7FPapvZa5djS/0ll4kp11HDJbIxpcN2mXWeq+wiXae93vOS8dWtbXm+hNYNczvWZrMkYvEk5bN0qxLkXDfItYzGGOM6dNwDX+pEvQbpS6tVGQt82gdu7+mr9aeZxjyrSrtzm0ffkvpzN8V0lSl5kHj/0Dk4luH5QC36jep//FrvhJyBOLNvVHJkE3epLy0vy34WGjq/iYTKD2ExbUUYE5/luXaaNGZ5Ssf63JNP0nalZP+p5kkXXlyiXCl9Te3Yvj1qJ9NSgz5xhrSxiUBaBWb6yMovMFK36rqk9a0q7frC7ELUtut5uTFsXwNHbii/NkNlR2hpr9F1Ts8A5TXV61LzHmN67t4Babc5NTsTtS11XcZTdI7SGXmeU2yci6ncvM1bScdfY/lVxhizsEBjZ5iU/e9Vt98Rta/dQTanE+elrWk9pOtpbl72le7N7HrqUja+LImkUpbHiFtEHjom9eNnpvK0jrjMx9jcR3kJQULaqDbZhZPq6hax9ILMtVnvLC/no3ZPSh4Hl+UFTE7KXIktG0nb7iTl97gdq8vsQ331PMjvS2Eg71FdGepjczMLIjbL7HHLRdmPrt1H+Z/NBmn/Z2dlf+7K0Hnt6pLXSG8PxQb7Zd7hzNJ01L5wgfp3NivzXEL2PH16XF4H20bJNjqlrs+BFK1nQd1zMuo4r4X2emIEAAAAAAAArBm8DAAAAAAAANChrFkmpK0/5UqYbEct5rNpcEtbfTGdwYqqqAxb/bbNrDgt/T7DppM8JXlws/QbLou5akqqjx2V2rKs7Pbod/89at9862tE7KrN10btk+elpZpxaJqf24x+DzYFpu0b+Wdtv8qmwWPq+Dl2e73nxWK0P7atJWWrV8nlH4OKlBF4dZo2dB1lxcV/QtlBclmPrkDMK4PWVfVXfnFwm1EtsUmlaZo6npE2ag1WndVJqOuJLeoqa1ku89M2tLbhx1b3G145W0akTChYNdYuJJJ0gANltcgtZmtlVUE3oP6SGx4UMV5tt1GVkhuLTaEnknKorqZG2Tpk311KkvziqUtyO2NxmspuMhs+z1ISRGYJXfXkOiYrtJ3elLymhny6prqysi91Z0i2WVW2u5OXSFpQnT0rYrZH67SUlIpvtqcke0FTVaBd57gp6g/VprLGTJNkgNs8GmNMjJ1L22j5IB3PlLIjvGbHtqhdyEv5Ba+uPpCTFbCnLpI158Ki3JZeVi17cNuWqL11/wGx3DNPUpXWf/+Pb4rYk89T7LobbhIxx9B1ePKk7EfLJZJS9PQNiFiqK0exASn36B2k66ShbJl9i9kGK/lKoqu9ZEJFZj27MCPtQ3fs2Bm1s8pu22WWwgUm1TLGGCf24vdErVblFsInlUXoEpP0ZjNSgsPvdVu2bhaxdJyuizp7Th3eINeRTdG4tX2btLm9eIlkPcvKmjfNrpEEk7Pv37dfLFct0rV85oKUWDWbrJq3en72mb58w0ZZWbxSlePDWmivJ0YAAAAAAADAmsHLAAAAAAAAAB0KXgYAAAAAAADoUC4jZ4DXfZfvEFzC7Uh5qeEyOkvpiqVKVVvucX2U/D2H5Qw4SgNpsfXYave4Npp/LVDrSHbnonamR8ZqC6R5e+TfHxaxn7j7HVG71C81dZOL4/TB1TkDXJetLbWo7bjqGLGgzqtot5wBi3cspW+22L5aOsa+F9pSw1+t07l0banv5DksjbrUgDfrtB5tO8rzBBpKa22Y9WGKWX+lU1Kr29OXo9+y5PpLHukSw5jSRHOLWpU7EfJrVluLsmVX2DGy71k6D4DnDKhryG7DpAHfY5p0lUfSqFCuiNWUsQzLAUklZQ5IpUrfa7jSCrlik1Y5zjTNxhiTHCI997DSJherdC7KlsqFsblGl9ly2i3GUWXnadh1tLwkdfqTVbpWsil5HPp6qS+lkzm5zi7S4jYLcuy0GqT1DkOphQ19yl8ILPk935d2e+sdm43/3Tlpa81TWGKusn0MSMPtK117wC7iZHeXiM1V6FifvzgtYsMs96U/lPelVB9p7sMJqYE+c/JU1M5YtP58Rfaxx46cjNrnJmdFrI+d1vOzT4pYrcZy81Ru2XX7KadveNM2ETs5tUjbv2WDiLlsfA6byprV0LHO52X/c2LyWl/vJNNsfFI3mIWFfNROxGT/azAb3Fogx4SuHupz9Rpdy7Z65ltmNrGVhrSon5ml/uEOy3vuyCbKS+nrl7kACTZOp7rInjTZK/X3Xo3GtHJZnuOFJbIh9VUe2TD7vX5mT/vjtx0Uy108R9fI4qLMO0jE6VmxOydzWQplOg49PdIO1xQvf+xrrydGAAAAAAAAwJrBywAAAAAAAAAdypplQqGQpMh3CFE9WL1eOEz2YllyGoWvx1pRcY6vUlshMitJJXng1ojanio09Pvyt/VyhBJ6mPQATScVvEURO/rss1F71749Ilao5qN2ua6ncFiVZvWLcv/U1lhCpyHQx2zdw6vtar2K0LmoEKv27Ch1Fi9sHSq5T8gkFPW6nJass6loPTXoB9xmV8nUmNwiyab/hgZlxdBMD03rF6qyGmKFySK0G6oQ1mmLWtZBghVWvVyLtroUbUUfk7638ve0tKQNaLKq5b4np7s9Xv22qqQEGZoKL1flSSsYmnqvD0vrO9NDU9ypfjl1PcLsDh0lOzxxkqz3tIWnxaQmvE+suKRYB9LVpPmuapvkWpmC82V5bVzK56M2r+ZsjDGOQ/tub5L2q06TpuaDmqru3CCZUliTU+xebcm0E0ytYIJAyrNi3Ep4hb03s65W98uAnfjZsrR9LDTpHM1WpVRy4dzFqL15o9yWBtuAvm1SjjPn0XZ+/QhZf+bLcowte/TbW/fdImI5VpV9YWFexJbLZIG69yp5D3ZZ5dfHjxwRsTyzy40lpDVmlY//oTx+ZWZXOj0zJ2LVanv1v2wXjWPJuBzHuCw5VDLJLva9hOq389NTUTvN5EWhqnjt+NRv4rYcO5Js/Csvy/vlErPLvWqnHEOHExSzWHvJk7997tJE1PbqcoxJsersvb3yPp5g98B9e3m1Y3ktNTzqXweu3Sdi2RzJf2IxeW+eWaa+v2vbdhG75qC06l0LmBkAAAAAAACgQ8HLAAAAAAAAAB0KXgYAAAAAAADoUNacMyB0xUqUGARaWc8IuR5eIqTelra2W91uMxR5CKvrn8O1vupo5zyeT2DpIMV6N0ht66WLZJtWOSy1ZSOjZJ3nLytbQp9pyCytzw1XjXEbzVCdA6vN3vPqTdIaOrpUuZC1y2MUMItLK5DnstEgLbIbStsxsRrV/2y2AdrCkyciBJ4Muux78QQtl0zJy7DJbCvzZdmPGjbLGVB9M8b0uDFX9oe4T78d03kOLK/CdbVFLetj+lpYsfPtjcf08XVL2udxe2JbaTtNgqw/61lZzt7uI638wMZdIlYOmPVnUupkrTj9fkLlDGSzlIewXJQ5AwHLexA2smpw5paTnrKJDdm446gck5Bpe72G7GfNJn2u1aRGvOGSZtd2pMVqLGRaYlfaX9b5PSQux1WnW35e70yfJwtCfZ1msqQt7mXWxMYYUyqxcS6mLAjZmNTwZV+Jsf4x0D8gYgGz2W00pA4820Xnb2hIWqAWlikvIR4nq8TujXK7emPUH3x1GheZLrzhy765dXRH1L7mmv0idonZnB4+dlyulI1lvtK815idpKuutTzblsVFmSMQNKR+fb1TqVL/aNblOU8yy2T9LFJr0rXOc/GMMSbBxs2RLF3bYULash4+cT5qv/DCBRHbupGew4JmVcSmJim3JZsYE7H+LupjU0t07sYn5Hnr7qYcFcfIXIkm29fFZZlzUyzQvfvCRco7yB89JpYz7F5iGXlfqTXoMx8/jTFm4iLlqIzt3ShiTlgxl0t7PTECAAAAAAAA1gxeBgAAAAAAAOhQrFBrcAAAAAAAAAAdAWYGAAAAAAAA6FDwMgAAAAAAAECHgpcBAAAAAAAAOhS8DAAAAAAAANCh4GUAAAAAAACADgUvAwAAAAAAAHQoeBkAAAAAAACgQ8HLAAAAAAAAAB0KXgYAAAAAAADoUPAyAAAAAAAAQIeClwEAAAAAAAA6FLwMAAAAAAAA0KHgZQAAAAAAAIAOBS8DAAAAAAAAdCh4GQAAAAAAAKBDwcsAAAAAAAAAHQpeBgAAAAAAAOhQ8DIAAAAAAABAh4KXAQAAAAAAADoUvAwAAAAAAADQoeBlAAAAAAAAgA4FLwMAAAAAAAB0KHgZAAAAAAAAoEPBywAAAAAAAAAdCl4GAAAAAAAA6FDwMgAAAAAAAECHgpcBAAAAAAAAOhS8DAAAAAAAANCh4GUAAAAAAACADgUvAwAAAAAAAHQoeBkAAAAAAACgQ8HLAAAAAAAAAB0KXgYAAAAAAADoUPAyAAAAAAAAQIeClwEAAAAAAAA6FLwMAAAAAAAA0KHgZQAAAAAAAIAOBS8DAAAAAAAAdCht8zIwNjZmxsbGzN69e43rutHnt7/97Vdk/ZZlmVKpdEXWBTqD0dFRs2fPHnPgwAGze/duc88995hHH330ld4s0CH88z//s7nxxhvN2NiYueaaa8xdd91lgiAwo6Oj5ujRoy/6nV/5lV8x3/rWt17mLQU/KhSLRZPNZs2v/MqvrGn5c+fOmb/927/9IW+V5L777jN/+Zd/+aKx3/3d3zX/5//8H2OMMb/3e79nPvjBD76cmwZ+hPE8z/z3//7fzZ49e8y+ffvMnj17zHve8x6Tz+dX/c4jjzxivvrVr758G/kK4r7SG3ClOHTokDHme4PTwYMHo88cz/OM67bNLoN1wGc/+1mzf/9+Y4wxDz30kHnzm99svvKVr5hbbrnlFd4y0M5MT0+b9773vebJJ58027ZtM8YY88wzzxjLslp+73//7//9cmwe+BHlH//xH80NN9xgHnzwQfORj3zEZLPZlst//2XgPe95z8u0ha357//9v7/SmwB+RLn//vvN4uKieeyxx0xvb68JgsA8+OCDZnFx0eRyuRf9ziOPPGJKpZJ5wxve8PJu7CtA28wMrMbo6Kj5oz/6I/Pa177W/OIv/qJ55JFHzMGDB6P40aNHzejoaPT5X//1X81NN91kDhw4YMbGxszjjz8u1heGofnwhz9s7rnnHlOpVF6u3QBtwD333GN+9Vd/1fzpn/6pKZVK5pd/+ZfN/v37zf79+83v//7vR8s9//zz5pZbbjH79+8373znO82tt95qvvjFL76CWw7WG1NTU8Z1XdPf3x/97YYbboheBh588EHzYz/2Y2b79u3mD//wD6Nl7rjjjqiv3Xfffebd7363ueuuu8yePXvMfffdZ+r1+su7I+Bl5YEHHjAf/vCHzWte8xrzT//0T8YYYz72sY+Ze++9N1rmi1/8ornjjjuMMca8973vNc8//7wZGxszd999tzHGmKeeesrcdttt5rrrrjM333yz+c53vmOM+d6Lw8DAgPnt3/5tc/3115s9e/aYp556yrznPe+Jlp2cnDTGGOP7vvngBz8YjY/vf//7TaPRiLbh8OHDL9ovW80a/Omf/qm5+eabzQ033GDe/OY3m4sXL17Zgwd+ZDl9+rT5zGc+Yz760Y+a3t5eY4wxtm2bt73tbSadTpvXvva15sYbbzT79u0zH/jAB0wYhubQoUPmb/7mb8zHP/5xMzY21vYvmm3/MmCMMRcuXDBf//rXzac+9amWy508edLcf//95lOf+pQ5fPiwefLJJ82ePXuieK1WM+94xztMpVIxn/vc50w6nf5hbzpoM2666SZz7Ngx8wd/8Aem0WiYI0eOmMcff9x8/vOfN5/5zGeMMcb8wi/8gnn/+99vjh49an7zN3/TPPnkk6/wVoP1xoEDB8xtt91mtm7dan7qp37K/Mmf/ImZmJiI4vl83jz66KPmiSeeWBHjPP744+ahhx4yx44dM4uLi+bP//zPX65dAC8zx44dMxcvXjRvetObzP33328eeOCBH/idv/mbvzF79+41hw4dMl/4whdMo9EwP/3TP21+7/d+zxw5csT82Z/9mbn33ntNuVw2xhizsLBgbrvtNvPss8+a+++/37zuda8zv/qrv2qOHDliDh48GD3I/+3f/q15+umnzdNPP20OHTpkzpw5I/re5fbLf/iHfzAnT540jz32mHnmmWfMz/3cz5n3ve99/4mjBdYTzzzzjNm9e7cZGBhYEcvlcuZf/uVfzNNPP22OHDlizp49ax588EEzNjZm3vve95p3vetd5tChQ+Z3f/d3X4Etf/noiJeBX/qlX/qB0+PGGPO1r33NvPnNbzZXXXWVMcaYWCxmenp6ovib3vQmMzY2Zv7iL/7C2HZHHDpwhQnD0BhjzMMPP2ze+973Gtu2TSaTMe9617vMww8/bAqFgjl69Kh55zvfaYwx5sYbbzTXXXfdK7nJYB1i27Z58MEHzaOPPmre9KY3me985ztm37595vTp08YYY37+53/eGGPM4OCg2bFjhxkfH3/R4WxTpAAAnzBJREFU9bz97W832WzWOI5jfvmXf9k8/PDDL9s+gJeXBx54wLzrXe8yjuOYt7zlLebs2bPm+PHjl7WOEydOmHg8bt74xjcaY4x59atfbYaGhsyRI0eMMcZks1nzlre8xRjzvZmqzZs3m7GxMWPM98a6s2fPGmO+Nz7ef//9JpFIGNd1zbvf/W7R9y63X37+8583Dz/8cJRD8z/+x/8w58+fv6x9A+1JEATmwx/+sDlw4IC5/vrrzVNPPfWiMvN2pyOeaLnu0XVd4/t+9LlWq615PXfddZf56le/aorF4hXdPtA5PPnkk2b//v0mDMMVL6iWZUV/X8vLKwA/iD179pj/8l/+i/n85z9vbr31VvOFL3zBGGNMMpmMlnEcx3iet6b1oV+2J81m03zyk580H//4x83o6KjZtWuXqVQq5u///u8v6575YuOaMdRvEolE9DfHcVbth6uNj6vxg/plGIbmt3/7t82hQ4fMoUOHzHPPPdeRD3ydyg033GBOnTplFhYWVsT+7M/+zCwsLJjHH3/cHDlyxLzzne+8rOfCdqEjXgY427dvN+Pj41Gn+MQnPhHF3vjGN5p/+7d/MydPnjTGfG+AXF5ejuK/8zu/Y+6++27z+te/3iwtLb28Gw7WPQ899JD567/+a/Mbv/Eb5vWvf735u7/7OxOGoSmXy+aTn/yked3rXmd6enrM3r17zac//WljjDHPPvusee65517hLQfrjYmJiUirbYwxS0tLZnx83OzcufOy1vOZz3zGlMtl4/u++ehHP2pe97rXXelNBT8CPPTQQ2bHjh1mYmLCnDt3zpw7d8585zvfMR//+MfNtm3bzOHDh02tVjOe55l/+Id/iL7X3d0t7pF79uwx9XrdfP3rXzfGGPPoo4+a2dlZc+21117W9rz+9a83H/vYx0yj0TCe55kHHnhA9L3L7Zd33323+au/+iuzuLhojPnevf3ZZ5+9rG0C65ddu3aZn/mZnzH3339/5B4UhqH5+Mc/bp5++mkzMjJiksmkmZmZieS6xqzs3+1Mx1nrbNq0yXzwgx80Bw8eNKOjo+b222+PYrt27TIPPPCA+bmf+znTbDaN4zjmf/2v/2VuvvnmaJlf//VfN9ls1tx5553my1/+shkeHn4ldgOsE+69916TSCRMuVw2e/fuNV/60pfMrbfeGiXFff8m+ba3vS1K0vv4xz9ufumXfsn8z//5P831119vDhw4IORqAPwgvm+jNz4+btLptPE8z/ziL/6iueeee8x//a//dc3ruf32281b3/pWc/HiRXPrrbea97///T/ErQavFA888EAkHfs++/fvNxs3bjRzc3PmjW98o9m/f78ZHR01119/ffRQfd1115mrr77a7N+/3+zYscN84QtfMA8++KD5wAc+YMrlskkmk+Yzn/mMyWQyZm5ubs3b8573vMecOXPG3HDDDcaY7yW2f+ADH4jil9svf+EXfsEsLCyYO+64w1iWZTzPM/fff7+5/vrr17xNYH3z93//9+YP//APzS233GJc1zVhGJrbb7/dfOQjHzFve9vbzNjYmNm0aZN4sfypn/op84lPfMKMjY2Zn/7pn27rvAEr/L6IGQDwI0G5XDbpdNpYlmWef/55c8cdd5gTJ05ELggAvBzcd9995uDBg0i0BACANqfjZgYA+FHnO9/5jvnQhz4UJRv/3d/9HV4EAAAAAPBDATMDAAAAAAAAdCgdl0AMAAAAAAAA+B54GQAAAAAAAKBDwcsAAAAAAAAAHQpeBgAAAAAAAOhQ8DIAAAAAAABAh7Jma1FdRlysxHVftG2MMbFYbE3fe6kxvn69rN4WHuPf08vxz7Yt35dWW8flbPPlxNa6nfp78Xg8av/BH/yBWe/svvPtUbvZbIqYZTWidlD3RGwgR8W6rr92r4ht2jBEH0JfxOYWqRz54aPHRCy/TCXNbTcuYoFF5lyxmDwnAfsJP4izvwdiOc+jfQiaVRHrSicpZsv+0PBoPTV1jDi28g9zjBW1LSODmS7qf5Ylj1HI9iEM5XViWbTOZ7/6CdMO8LNUVdXqKzWKFuuWiDVYl7QdGQvYx2pDhEydffZkFzH89HqyyxtxltS5Huyidpa6kvHqakFmMldpyFjNp40OfNkneF9y5PBobId2olGX/aXRpPW4Mfl7SZfWGVMrLddo5z11DSdc+o0f25cw650woA7hq+MusX7A59W+Jo97qDvPGn/PCtf4e+rXWn9e37ix1Cu9CVcAun7ziwsiUi2Xo/bQ8KCIhez6nRo/I2Jf/efPRe033/PTUXvDzj3yly26l9r2S+lf4AeBmQEAAAAAAAA6lDXPDLT6j3urmQH+Pf3f67XGWv/nfu3rXO0/6XodfDag1XbpWQP++aXG9O+1+h7/7ytvv9jn9U4Q8H+byv+K2Rb9x6KvS/4H8FVj9B+GW2+4RsT8ciFq93b1i1ji+g1Re0uP7H+PPfKNqD1XlP+Bn2ebZnfL8xUG9F9M3+PnR58r+q9YsyHX32D/7QxsNaMg/iOn/svH/tNrWbKP8W/5njy2QUDLWpb697QoURKsHmoTlvLU9tUO1n36XG3IY9H02LF3XBVj/y1X/+GvB3SuG77sI012OfhqEqjBpqBsNQ3ksnO4uEzLVeurzyS5K8YS+uz7cqOtgNZvO/K3fTbOlmsyVq2ya6Mpp0gcts257oyIZVN0PJuB3JZik38eMusdix0/t+Xwrv/Ht9Z7gRoz9PW+CpZeP2YG2h5XPad865uPRO03vPENItbTT7Pz8zNTIlbIL0bt40cOR+3h7bvFcpYrfw9ceTAzAAAAAAAAQIeClwEAAAAAAAA6FLwMAAAAAAAA0KGsOWegVV7AWnMGXPel6ftXrJOtR2vXRGyN7juttmvl/vDtarE/Lde59n29Eg5F7QHXskstK3e52bVtm4jt37Ulai9dOCFi3/7KF6P2hn6pKX713T8Ttd2adE7oapLO0U7LHIVaQHYtyhxGvHnzPJUgWF0fG48rxyp2nhvqe1y7q3NGQr7s6ikKJgy19p8+Nxtyj7hj1coUlfbT/Ba5Tl+7+zBNv6c00wE7OM2m0v4zWbvvy2PmMccYnndgjDHNOms3VY4C0+37gcwBKRfpi/zchur/QvzXXJWjE2OuM9pxJgz4OiVVtp3lhlynzxyLvKZyrTJ0kIq1iohl47Tdhap03iosF6P23a9e/zkDfAwM1HmVF6AeF+gYhS2SefS1z8fZFeNJq6Qgi35vRT7B6r+u1sHybNQ6RJ/Tm/EjmivXFgY47FinM2kRijGXtC88+BkRe9cv/2LUrheLIpZhzykLM9NRu1aRy6V7ZE4fuPJgZgAAAAAAAIAOBS8DAAAAAAAAdChXXCa0woqTFUayLfk9XoDHVt/jNmqOstR02XpcS8ko2GdXf49bszG5j6OKN7lC7qPW4YZsOTn3F7Opio9jy+2ymRfcysJsbFu0LInNL7aWHq1+TtqBJuuqoZIt9BiSPnRbdRH79le/FLWLC3MiNn1+ktoXpOVZECf5T1NZHQ710Xku1WT1qVKJptYXTFbEGrxwSoxP+RsJt2fU094O64/a0Y+tZ4X0aM3T1HJBm/XjWFzb164uCVm7PGD9UGHHV5124/NCXErGxiVFSglkQsO/p2K8H+giU+Hqsrk6q4jWUBIirlfwmRVnsy6vG17USssa02Jok+e5zqxpyxV1bbDtqivJWejxPq/GQPZ7JUceh4kyyYYWClJa0Gy2Ksy1HuFSPyUFEp9X1wHqSCCkQVpetPo6uexFK4b4kBVo6RFfWFhj6/158faKzbT0yNN+8sQfFQI+Hind075ryML7j//g90Tsqh0k1c0zKZAxxrjsfC3Nz0TtSiEvlkt399IHZY0NrgyYGQAAAAAAAKBDwcsAAAAAAAAAHQpeBgAAAAAAAOhQXlrOgLO6fajW9+/ednXU7u3fIFcaJ52q5cZFyDYpts5AxVgegpHfc5nGObCbItb0mE6VaxJXWJexmK10+jHS2ToqZ8Bq0rbYRunamMa3UZf706gzq75Qamm7e0i7Hk+8NEvSdsBndo1pJVLNMr3zc088LmJz06RD7OvJiVidHeqpUknEvCefidq7tw2K2Matw1E7rBZEbINF/SNUFpNLhnINeM8MW4hiV1g3smV1zAt4HoK6ZqwW7/1C/6tF7fQ915F5MEHI9iJQ+/AjavH3n6HAJPANKbEXeR9y1DHiWDi2PL5JNnw56n8zZaajXyrKH6xW6bO2D60ybb7n6VwDw2K0pY261PfzdepTmW/hk1irU/+v1uSRCNgY6HlynPNYDoG6hZjAp31tNuR21mpsnb6Mhdp+c93D+47OMLFaxNh4ojT2PCdJjxkNdv6aTXkubXaSEsmkiFktxhP+Pa4718sFov/pPKa1WaWCK4vFL8xA9odshvrAwvSEiP0///NPo/a+nTtFLJei79XZM1NxeUks179xK22Hg5yBHwaYGQAAAAAAAKBDwcsAAAAAAAAAHcpLkgm1qnarZ5Bz/VQ5buMGOUXUDFnFSGXFaVlU4S5QVpJ8atBeIY+h9XjaXpHpQjw27amnR8XUY1Ouw/fYvsZUVVAnT+sI5JS1XaPv+Z78Pc+nqfVAWQimu0gmxC1IjdHVkNtbJhQPSSowqGRjOfZxMZDvt5ksVQTu7pFWn12bSLb27LEzIja/lI/a1+6U1UvDOtkZJlSHH+kmeZthkgljjAlZ9dR8yPqpumaClvZ4LSqIBlxupqfn11aduJW6Z6WEaPWtaj+RkDGFMrNSVTvMh5pA2RHb7Ohk4/KLvVlaVlesLtVpLCiWlkWsXKbrQds38srFWirjsdLFZSaNKxSk3I13hJVV3rkts4x5Preblb3AjbHj4strwwto74OmijXoPtFsyCrDPpM6JZPy96oVKf1b/7Dz3MJSk1dsNsYYi39PddxyhcakqckZEZudml91S5bY+FgslkUs090dtXtyORHrYuPx4OBA1O7v7xXLpdIkH9Hjjs/6jra4BD88uNWxpc7Jt/7j6ywm+1/AJIgzF8+LmDtIEtwKk9WeO3tKLLd939jlbzC4LDAzAAAAAAAAQIeClwEAAAAAAAA6FLwMAAAAAAAA0KGsWVjO8wS0Hp3HLKXhazC5YrWqrDhtWk+2S9qT1YqkDXUtqXu12O9rXWqzQcs2falntXxmkxiSp5+2D40naKOTmbyIDaRz9MGTx+HiAmlU8w2pm/NZCe1Q2Tzy37ctqf91WA4Ez4cwRlm6tsjjaAcyTIeYDKVuOOGSfjGd7hIxrmz0lR1aOk3H85pd20Rs8tzJqJ0vqd+L0/ccZW0bY+/XWWVt28POSdWj5epK8y3UmFrfb1aHW+75Kg+G5wnonAG+Vkv1TW49uCJngK+mAxz+fLb/Os+IHzdHHd84uxTLS7MiZnvUf9zefhFzmW46lpHjo2H5J6GnzUxpDPQDlbfCcm+cGO1DJivHFvEd9Zlr0GNxlU/ADkujqexDRT6B3C7uWqtdcG2WT+bGV/iO0nLK1NW22s2CkOcEKdtU4Swq+2ad5QWMnzwpYufOn4vaUzMLIlYu0flLZ1MilkxRXsCX/+0/RKxWpvEynsmIWILZYw/201i9Z+81YrkbD94Ytbdu2yximTRtSxjT91I6ELbquTLNQl6jgbW6NatlaatWvk7++6uPq20BO0YXx8dF6OGv/FvU7st1i9hwT1/UTqtDtDhH42GRjQ9PPv5dsdyr33h31I4lVh+rwEsHMwMAAAAAAAB0KHgZAAAAAAAAoEO5MtaizOLScuT7hRMji9DQkpKKRJymhTaOJETsfL0Yte1YTsTml8mqKl+R06Ul5uipK8ByK04uf7DVNnO5RS4tp0ff+uabovZVm3pE7Etf+UbUfur4BRFbYhumrQAdYdEopxZdti3aWtSyuHRLTde3WZW+TMAqsNZkdcIy65ulipQK+E067g1lZzh5gaY6919znYilLfpetS6rvy7y6XPWv40xJmEzW0dlkdjF+l+Jneeyp86dkABoO89WVnpcCrT293wu/9FfE5/Vb/PrS/9aOzr+OWyn6rWaitERCOqyDy4W8lH75NFnRMxjY8Fm1QczvWRpW65LyU2hROtsMqtbY4wJ2PkMlWSES0iERbOjzy0t56tqwQ1WLbgiFXQmYBILXRnZ8/h26erZ9L0V1bPZopbqg8LS1Vd2uqbd5AQtrIPZte81ZP879gz1ufET0rKx5tO5tJSNdg+TQ1aL0nrWcWnc2zK0QcQOH32B1u/JkSHGhjq/TJakjbIcY2cuTUXt3Xt2idg1+/ZE7Z1Xy5jDfiDUch8+lmqprvisZZurj8etZUJrC60XQmZZ/PC/flHEKkt0T05oWRW7nhNpeb+Ms+eWmQsXo/bxI4fFcoWlxajdPyItwluJsaxWVtyrhlY3ym5V8Xql/Jb/Fr/HquV4t2zl7f1DBjMDAAAAAAAAdCh4GQAAAAAAAKBDwcsAAAAAAAAAHcqVyRngNpbKptNneis/UNpTj+noHVmO/MQUacTmC1ID2WySVt9z1C6wbbETWotNeQm2YbkATaVxY5q35brUuM2VSK92ywa5zftuIAu07MiAiB177kzUnr40LWLJFK0zlpa5E10ZyrOw7dXzArSVaCzWXnrZGLMNDJtSqFyqUx9LaSs7h+zrLKX9LzIdYrkkNbEjw1QmfWbyoohxDXOg3qfL7DdcpT3tcklz2b2J7NbiFWkbeeHSJFu/1Chynb7vSU22zzTZgdI2BjZti6v0sjxPZaXW/8U15sZIB0NXfa+9Mla+h8V09HYo80EWJiei9tLUpIjN5qlvTc/MiJhXo/4yM7EoYpt3jNIHW17PIRs7m03Zr6s1ulZsdSYCLl4OW/QXtn+BL9fvsX4XKItL3id8X8f4vUD+HrdAXWHbyvq8Vux6YlllQd12vZDZqIZau07HaOK8tH2cm6Lxa3AgJ2KFMtlhB77KsWOf88qiNqhS/9uxdZOIPcfyEuoqf8HiuW3sHuWq364XKJ/g1PETIjY/Pxe1m2q7rt57Na3e1eMct7bVuVj8s84ZYHpvowlXabcfTdZXZs6cFrEMu7btUF531RKdy0RC5o3yPLTFZRonk748B8U5Gjf7hjbK7WJ5G7a6gdncTlzlavIhSNrjrz5uWEY/K7bKGaFlPZ89v+jcJvbbgRoXY8xzWedLqQ37T4OZAQAAAAAAADoUvAwAAAAAAADQoVyRCsT8s6UkRHFWHTaXlbFUiltESQvPQoXeU4p1ZVfKrUBdOYXNpTSuryr2sillyyapSRhqa1HWdqVt38QEVcxr1GTF0DSbAhvdLCvhDvTQvl46IyVEC3mafqur6R47ScevlTyr1TlpB6psGrnRkFNptQpNQ9qq6mlXiiQ4cSVb4FKqJWaNZowxTSbX0sedyx8qzB7PGGMsNm3tJOQ58JicY9cIyYS29kt7vIfYtiwuy/3hOgxdZZhPMWpbR5dNn1qu7u9sitRafap7pUyITbu3o5eoYqm4HLXjRo47boMkPkkvL2KNJZIQhctzMjZPVV+9prQrPX78W/S9pBxPtm4ZjtoTefl7sRxZkqb7ZfVWLmuLc9mEmrpusnnnlRIi/j0pA+H2ntrqk/dJX03Z8+rEgZIIcLu9FdIjvh7VBa22+18XjS2WkqlVS3SfujQuZTXdWbovxVRV5kaDPse7ZB/zanT8FgtyHKrVWPXqHimX7R+k++LFCVlxmxfLrlepf3h1uT9NJnULle3t/Ox81P7uo7JSbSJB4/buq7aLWGCtLnm0eOdZMZS1GttWr07cdjh07fX0yb5SrtMzTFxJt8Mak7cV5DW5XKDvLS+Tnbyl1nHpwvmovW3vARELxBAgz5WwFlWSRo9ZJI+fJyv46Wkp487n6X5crsjnwTjrbwOD8rluaIjG6K1bt0TttJIyC6njCvUal6j9cO+x7TZaAgAAAAAAANYIXgYAAAAAAADoUPAyAAAAAAAAQIfykqxFW+nTbfV6MZKjXIBdW4ZErKuLaRKLJRELq0ynlZ8QMc+QTtu3pGY1Hb8qamdjORFbXDoSta0Ys/ELpLWjH5AGsn9Y2qadPEf7WvauErEupp2szi6LWHeW9nXf/i0iduocadROXJgSsZRNxy8Wk8fdcTonZ6Aesn21pD1Zs5mP2pYtNZxNdsx8ZS2aYTkeWn9fYdrARFzqbJtN6nNaw+wy0Z+bUf3KI41ik2nHd14tNZBDfdSP5pfldeEw/XSocwZalTVnny8vZlbllSyd/kpQKOajdsyX2tHuJF3fuX6lCa3R540ZecxO1mmcePqZkyIWY1bM2ZzMTxrspT7ZmJJ2pd2sf9oJ+XtLy5Qr1WAWjWlX9vG+ERqjaspatMSsmOuO1A47MeqEzUD+trTCVfkEPrfhUxahvM8rrXfI7V7VzSdQVqPrH2a/6slx4dL556P2zNQZERvKUX5SGKgbtE/rbHryXnqOWd3Ozknr5XKVlt0Sk3bYr7r1pqj99W88KmIVltvgMQ13qSbzZTyWu+Q0pJV0skHjqu/JMfC736TfyyRlzuAm/vxhKa0/6ztamy3NQ/WY1952opxqk+n7qzLHrtQgvX9XWo5/BZYX5ft9ItZk589huWzlshxfz5wmK9Pb1PjgsHNnr8gZICYvXRCxhx78bNT+2sNfi9pLi3LfPI+uEduR14/Ffjudljb0XSwH5/bbb4/ad7/1p8RyG7dTzqCtbL+tVT+YK971MDMAAAAAAABAh4KXAQAAAAAAADqUNWtJuA2jno7l1ou2LecuslmaOulS0yh+g6YeHbXOjEPTRM25oyIW2jRNZLlyyijRTVOISTWlk4nRdqazVMU4DKTsxA/IBjSTzopYvkTTo4slJVFiVUJjarrHsWg7Q1faqMVTtF2lmowlu7ilq7JKZcdd21/qz+sel85R6MrzlcrSOeodGhSxNDvnpYV5EYvHaT2ZjOybLpumDgN5nkUPl6fL+EyaUG9IeUU6Tb9nhbTOeCiXu+G6a6L2bFFaly4xKzZ9HTIX3xXWjTF2LbjquuCyJ13BkU+Z62uUL9kJ/1VwuHRBXV4+s9Hsyakq4mUak8IuOeS+ZvSOqJ3ZKGWUezaNRO3v/McjIlZapGl525G2zDOXqOLs7JEjIjbN7FE3dtM09tUb5G9nE9QnnnjisIjlG9S3Nl17o4j1btoZtZuBkn4wKZCtKs4GzKKxqexKOVomxCvHrphi15rVdU7Aqk4vL0nprN8gydfQgJRpWOz6btaVpSs7l4VlKVGdniT56vy8HIfmFvNRu69XyiHfdu+9UTur7EovTTOrUWbD3FQSTp9Jlmw1liXYmK7vs8vTNMY/9o1vitjrfuKOqN07JO1QfTYe66rytiXvu5LOkQmdOHooah995gkRSzJ5blLZU3NlmqckX+l0d9TuZn2lUJbLHWXjWLOqZGM9NP4tL8oq7l/47D9G7Yc+8w8iNnHxXNTmUsREXD5fZJPUvx0lp/TY+NOsSCndHJOVfuYfPhG1n378MbHcT/zUO6L2W+6+R8TSmRaP6FdYpdteoyUAAAAAAABgzeBlAAAAAAAAgA4FLwMAAAAAAAB0KC/JWnSFVpnFLKU5LjMN/Gw+L2JBQDrE0JU62wTTj/Vu2CVi9Qbpu+NppSdMkl4yUPZ/mQTpBON2mn1HasQSGconMJkREQssWv9iQWpbe4aY/aU6DsZnx0xb4DELvmW1zhyTNmprUcvi+QRSy9Zu1qLitVXlnrhp6jtOUmpU4zYdT32e3QRpARMJqQsNA9L+x5R1ns90tpayXQxZzkAjlP2vN5eL2jazXwstmXhwkFvPOrIffePx56L2xUlpKekzqz7XyOsiFaf12Lb8PY991nkBLhMmBkqkyDXaekxoRy3t1CRp8XdvlePC8OCGqL15QGqop5dJp18sSMvhgUEaa37y7teLWIqdQ55fZYwxfWW6vj//iNSgnlkkK79UNie3M03btv+q3VG7V9nndsWoL3Vn5LWxu48sT3+8f1rEvrlAfamcHhAxj3UJJ1hde+spjTjPC9DdymKxQOUTtFvOgM9yBkwgNfybN1Pe1MZhmedWXKQxsLQkx6RkJhe1Q6W/H9tL/WNhsSFi337su1G7T92DA2Yzed3+3SKWG6Qb2iJ7Hqg1VPIV80keyMoxfUMf2VP2ZmR+RK1OxyVfnhWxItOT53rlPcTizzArLByluagKtoi1F9/60pejdnMhL2IDLOcurXIb+4cpj29uSX6vVqYcuDh7vkml5Pk5fuxY1P7n//OPIjazRGPj49/9roideO5Q1LY8ec10peh5gD8/2eo82uxZwCgrW/6c4KiOE7KcmATLub0wLq1///av/5+ovbCwIGK/+Mv3R+14UvVZi+fq/ufHuvYaLQEAAAAAAABrBi8DAAAAAAAAdChr1pK0srEUEiJlw1Wt0rTKfFlWdjNMUlFakJZQExeoWly5LqcQa01mLcWmJI0xxmWVam01LRQ2abszWZoiGtkop7ObTaosXKlvFrFYkaaQLlyUU+Q7N7H12Moer8mqaPryHUzYjnpyOtaEzNpRHXfb7hxr0YZFUh03pmwJWaXWbkvud4LJY9yeHhHjFXubgexj3Gq0t1dWTawUqM+FaluarDprKi3lIkNDw7TODVTZOqaszEKPpEdju2X/G+gmK7YvPPwtEXv+HMmGHG1D27Ja8OoyjJeKdoBsBxaZNe1yj5SObezfGLWtQA6rr3v1XVH7yaekJV/IbB970/KcVZik6PqD14lYF+vXJxfPiVhwnNbpjoyK2MwCWVAeZ+PXhg1S9vSqm+n3bk9JKUacVYQv1aTN3/IESamSO+S0dpxJ4/J5WUHXD+m6DfX/qJhVYaCqbvOC49p2tN0qZNtMBujYUp6YSpOEyLJl/4un6HiOXzwhYtds3h+1+wfkOBd6dPyadXkuN265mWKW/D3fIalDU1llp5kksc5Oc6khzysfR2fKUiJXmKc+l+1SVV+76XMmI6t2Ly3SMQsDac3Kx/h4Vlr1OnFWJVdJdXmVa0tVNWa37rb4r2uaPS4Od0tr1j3bmLTVl8chX6PzV6vL8cKz2TjK+lu1Kft3hdmJ/o8//r9F7AKzk7XUGLBtA0mUujNSPpdhMqGWYwWXMDZlf7aFrb589vCZ73idVdh2lDW6zY7X5z7zTyJ29Z49UfvH75IyUi4LtlQPeykjXzv0UQAAAAAAAMBLAC8DAAAAAAAAdCh4GQAAAAAAAKBDeUk5A9q2UuQMKK26b5Peak7K+43xSSM7c+mUCBWK56J21Zc6+horZR+GcqV9qSHaFmaPZ4wxlQZ9Htm8PWpv3Ci15Hm2yopVE7GlZQo+9t15ERtI0zo39cl1hkxPaKt3sESCPqeS8tjG2LHVx91iVnCtzklbwERwTZUXYMdJi5xKyf3OZpilpopZTFfP8w6MMaanh7T5aWVfZzO7z3hO6hANs0XMZKT2tHeYdJXdvaRlNMrSz2L5C1JFbszODaRtvfO2G0SsUPxG1J4vyOuitc3i6gJ/rtHWmmz+uVWsXXCZ1nN5WR5fnqMxl5ca55E0jTsHto2K2PjU+ai9uJgXsRTr841QalUXmHb1x269VsRyMcpV+f99VeaVlHw6L6UK5VQleofEcs+zoe2pp86JmLtE25xUNr/TJbqORrunRGz0GtKn1+ZkvlUzJO1wTeWdebx/BnJMbzJhtqWvI23vvM6plunYXjwnj18mRf0xFZPHzw2p3+YSMtfFYlacQVUdL5dZFTvy2G7aRGNpGJd9oMySAbq7cyK2cZDGxEqF9mdqVlruHj5EVpKLc3m5WWxUvBRI/bVxmMVlVm6XHeNjs9yf/j6yL+3qkVam/UM05m4ZlTlcPTl2rB1lscr6bTt0xRtvuTVq1+ZkzkV/H+UQxJR2vnSWzuWwykupshzPBrO9bTTl+OozX+JllV/K+3tM9312r44p+/Uks+p0HdqOQFkbNxrUT3XuXTyVfNHljDEmHqdYsUj74zXlGFarUi5tqI7d5x58MGrz42+MMWlhuavvt5ff4TAzAAAAAAAAQIeClwEAAAAAAAA6lDVrSfj0ywprUTbFYrnKapFVV12cl9MvjqEpviAmpzncBK1nIL5NxjJk0WjF5NRMUGM2dJ609/QTZFfVcHdE7UpdWYvWyPYuFpd2qMUi/d7kjNwf190XtR01ZR3wKcRQHqNYjJYNQjmFxC2vOlkm5DKZhK40GmMSjWxWyna6u9ixrSu7VSadcRPKdoxZi2rpWzbOLclkLJWkafCurJSKdfVTP0uk6fdsNYdssWlK1Y2My6zt9u/cKmNveHXU/vfvPi1i08zKUR+/kE8pKjkRl/toW0e+lhX1h9tQJsQv2wVVSXOOTV1v3iQtDadZReDBqpT7XLuFqquPqyrDFy+ei9q93VqqRn0+uXmjiG2zaXp639yciN32Y9dH7f/4BlXr7E9L+Uh27iz9diCr1i6xaW4upzPGmHgvtw+V3ytMT0btwaocV2fLNDYH3fL4NV3aH6up7UOp54VaCqcKGa93lhbJXvG735EWoZuGaNxxqvK4d7EK6omEHK+mCyQ3agxLeUw3W2dcWRXbLhtXLXnP8j3q4xPnZZ/OsqrUwxtoDOxS8qXKNG1nMCAlbKVlOg4Tk1JelGdyjEqYE7HZEsUKVWltm2bjdlZZQvdkqU/v2LFFxPYfINnQtp3SnjeRbq978MAOeg7LbpT7WmfPLbk++Ty1oU7V2S1H3usuzlL/8H1qB+r24bJ7cC4nx5wqsyQNfDm+xtj3kkk1hrrU52JxautqvpZNUnH9LBBL0vcyXSrGn0u6clF7WclInQr152JNytIPPfts1D58+LCI3fqqV5krCWYGAAAAAAAA6FDwMgAAAAAAAECHsuZ5LOEYpKZRHJalradR0i7JLYq+nAIpFGmqOJuSkp6kS1OIQTgsYo0KffaVTMjymeuRI90E3CxNIS2UaeqxJz0oluvroUz5hZLKEGeVCq/aK6cv9+zZGbULk2dETEos5FRZyCQwlprb5snrrSoQt7tMKAyZHEBlzlvseNaasup0xac+kIqrypKs7arKkk029RhTWh2XyYR4VVVjjEmmaQozmc3JGPsci9Gve56c2uRmBq661qoFmmKsLMvpxuEsTVm+7ub9Ivalh78ZtZdlcUdjBWxbVPVSwyWAvpLdsfKvgaX7bfvJhOoNOnBeTfaz8XFy2Nm+UY5XqUEaJwrnLopYkjmcHdh/QMTSvSQzO/7MsyLWzyqv2j2yD7rdNGb1pGWfv/O2G6P2yTM0zp19/gWx3O17SBLw49dsELH/+A5Jj6oXF0Rsrnopal9UVURLTAbV3ZCVSJMJ6mcHbr5RxJ4ZJ1ciX1W05XICPS68tDqcP7rMzuaj9ne+dVTEbrmBHKXcurzPOh4d93RKjieZFF378/NyPOmfIdlQVsnI3DR9z+mW99nnzo5H7Ye/Il0Ch4dIVvMTbzkYtXNJeV4dQ1Kn7py8nnI5JiNTLlvpAvWrvCePg1Wn6+L8uLwObSat605KmZDdoHHvxPPPi9jMzO6o/YafeLWI7WTXkFEK1fXIwDaSVu8+KJ1tEh5d67Z21bHoXM5MSYexgFVgt9kzUiYpXaIChz6HtpSsTS/Qc2RCnbs0G//SKTkWxplMiMtaXSWJY6ZAJqaeE1LMTSiRlNdIg+2b59P3Eim5bw6TTtW1cyarvv3Zf/yUiF17Ld3je3LyGZaPhGsdBTEzAAAAAAAAQIeClwEAAAAAAAA6FLwMAAAAAAAA0KFckZwBl+cMWFIPFTZJsZSTzmUmEyeNWKMg9aUes1tK9SmNlUsa2UBpnHtypLOtlGUswTRjmR7SLvb3SkFfJiQLvLotLSfTGdLPjoxInVbgkEasGUi9oh8wzbu/ukWjm9D7urp9aEflDHDRpdajM3vPuidt7srMijCVlZpBXu25qfTNTVbhdYWGkIkIUympl+WaxXhC6hcTzL7MY/r7el3lvbBEkUZdamKnz5Mme/qirALpscvypltvErFXXUfa1qePnRUxl9n/Vm3VN7kmVx330GovTfYPotmk86TtWc+evxC1N/TlROz660nb6W6SlnwLS2RJ6io97dVbR6N2SlWmPPbsoahdLEubRD6GrHDbZLpcj1XzvfrG68VyXRtoHE1WVDXQ42RreeqsrAYahnQdFZXFZWOC+kt3t7QHvHXP1VF787C0bzz0POVjNJV1YCsHW6vN+ufM7GzU9gM5vi8t0ngSNuUxqlVId2yHMu8n5lJ/6ErJ8aqP2St3ZWQsnmVVX3MyZ+Xfvk35DKdPyL559gz1F+aubO569TViuZ5esqecmJHrmF2k8thVZV8beHRcClXZOXq7N0XtkSE53i8WKPfFD2Ss0aTf8OpynZUiHc95ltNhjDHbd7F+rEvJr0MyWXreefUbfkbE8hPnovbzj39DxCymza+WdT4L9dUse9bxk3K8q7KcwVKg8ksdGsfSys6VFzO3VV5bwtBveyz5yFLnPx6n346rx6pYk55Tw1Dex7ljeIJVvw7Sct8azHY+WZUDdq1AuWlHn35CxL751X+L2m+59/8tYgHLFIitsfw1ZgYAAAAAAADoUPAyAAAAAAAAQIeyZi0Jt7VcYS3KYpYjV8kclUx3Vk4nxg1NQ14qSMlDyKaD3bicY1vOk22nVZEVCL0iTUktLM2LWP/mu6L28GaSTVhxOdWYTVNV0Es1OUVeZNP6S9NyOrZQIB1Utamq2LH3LldPJwW0zYF+P2MzSrwK9PfXGi2mbEf153UPL5KrrD59JrvKl+VUYJZNyVlJKROy4rRSy5PnxKywKSSEnZiqnOmK60ROz/FzwmVCzaac9uTyBkttx3KeprMnWYVaY4zZtGM0aneraf1bbyTbyqEhaYk7MUt9+sy0tIo8N0vXUF3tj806p1ZuBYGUa7UD8/NkqWmrqqsWk8d845Cs/tzbn4va+3bIqtFZJlWbn5BjoMM8ZrduldKZTDfJeL7x9YdFbGacJEslJZurO3TtpJPUHmA2psYYc+IUrcP15bR590Bv1G4syeuNFVM33QVpv+qEJF+qNVV54Cytc3pKVX1n/TNM6nGN9UElC7Kd9vpfV2jROLFj13YR8306z1rCZifovmupCvdcKlauy+NXr5Kk48JFeU58m1WhVtK3ixN0Px3evFnEXCYFOXqc7uM3XzsqlhseJElPvpIXsTKT0y3X5JgeetTHAiMlt80CHZfBbinxzaSZtE5VWjcNOg5JR96DywW6bzzz1CER27NvNGr3y81cl/Cq547WH7LPgRpzePXqtJLVxmMkARPSZiV148+curp9nD0X6c2y2B88JTG0WWVum421Wl0oxhH12x6znbVVLHS4xJvGqdQK+TB9biqb8UaDPjdUdeJ//eIXo/Ztr32TiMkq0JAJAQAAAAAAAFqAlwEAAAAAAAA6FLwMAAAAAAAA0KFcEWtRh+mhXKVV703R93SJaROwZZMDIuSkSFvrB/J7pea5qG1VpcY5bm+M2l51TsTq+WlaB9Oh+q7UVHFteZcvNeHNJNNmGqmldcpkM9VYUrkM7Ccy2p4qpOMwkJHHL51gZd9VPgbXyLa7tag4Q1q3x3IGaqE8fjWfaYrjUqsXunQuG0q37/Ey6bayHWU6wXha6kttnj+jchv4ddPVpXx2Gfll6juhsjx1mOY3UHkOO0dJVx5PSJGqzfIjduyUuTu9A2Q9uGGz1HkHh49E7VOT8nqyfNofndvQKudiveI3mWbTVVr5OJ33fFnmIH332Weidi4tNcdXjdI4lx6V52xxkmxk63WpFx3YSt+78843iNiTzxyO2uOTUuv9xBPHo3aTSXvLtapYzrJpO8fHJ0VsZo5pqF05PtbZtRGq20vI9OKBut4aNep3y0V53RQKtA+D6Y0iVmW69lpDrjOhrDLXOwNDuai9aeuwiM1coHM0Ny2v0zTLGXDVvTtms3w1lY4RxkivnIgpy3CHxpPFghyHynU6D6+9aY+IFcs01hx6inJrXnjuuFhutmcmas8U5f2Z23l6aoxN5Wg7u1Tf9D3qKylPXod9DuUo6LGsUaW+WVe67Xyecgrnli6I2KlTlBPRPyKte9cjNhfTq3twYZGewxxl4ZnJUp5AMi1zBposv4Cv0lX9rVJfPQct20UetZ7aLtFzVN8PeSqAz6xF1XLCElzZgDfZ92Lq+vGY/t9mVsA6l4n/XFdGPhcEzJK+XJXPAqdPkMXzE489KmJvfPP/i/+CWQuYGQAAAAAAAKBDwcsAAAAAAAAAHcpLshbVtpVckqKnIXMpmo7b0C+nQEpVmk6qenJqKcWqBZZr2rKJTZe4ctomZCXnLEtOE9s+2VhlXKrmmMnI6ZeuDFXHdOx+ERtnVqaFoqyMePos7cOFc+dELM2lRyllcenS515VnS6bYHZe6rhz2YmWBa20IW0ftLVYKNpySplPrS0uS+lWmKHjV61JeQxzGjNBqGQLZVpnIqfOCZNC8GqsxhjTbNJvxByaLnWM6vsxOpezc7Iq7aULVD042yPlPt091G+5fMIYYyps6l5XVE4z6950f6+IjV1FlUEn56T8perR/qnZ+paVYdcrNSalaTTkseD7H1fTwGeZjewXq7IP/sRdd0btvTt2idjARhoD56elVOfcYarymhuUVrEHrt0XtbPqfD7zJFWxrDao3xVmpLQkZOOx2yPHQG+Oxr2q2h9epTkRU1aVDfpeQlVaZ13eOI6UBGzfTsehq7tPxObn6PcvLUtr1kZDXn/rnZ5uun/y42yMMUsV6o+XFpVVdor6Y0xZi6ZdGocS6pbhxknmEIvp+wt9Xi7LsbMnS+f2qm05EZudpXWeZPfE+Vl5ruw6XWuz83m5jhLtXyOUfSzL7t3pZFbEYkxm6ygZysjWbVE7mZbPDVUm0avXpZxu8gJJgy5NyOMwNScleusdblnrKPvV+Rm6T4W+lOs5CTruTV9+bzFP12+9SetPZOS9zTTouGeU1CiWJBlPqMbeCj93DfWsyGxOHXYP1M9SAbPtjal7Z6HOz7myPGcPETFuLa/l3syyO6Fs9FPMuryh7Jgr7PnzS//ykIi9+jWvjtq8mncrMDMAAAAAAABAh4KXAQAAAAAAADoUvAwAAAAAAADQobwka9FWOQPadjTGNPAD/VKnt3zqXNRuVGZEbP+Bq6P2xKzczKXTp+iDJbfFckhXaWeLImbipB9Lx8hatMstiMWyDmmxLs2Mi1itSBo3a0FqM//2y5+M2svdUq842EW623hMahIHB8kmbsOwtM7byOxY9XHnn9vdWjQIZGaAgAm2AyVWr1RJazg1JXWpNWbjmrJUqXLWr5RTmimVqR/FCzJvJM78xcoNqdv3me6xxEq76/wOm+1faVnpTi2K7bxqtwhxPebUpMw1SDJ9ZNfA6hpCS9Vi37aZ+mN/71kRO19lOnZbfq+p8iDagd7eXNRuNGTeT6VK/SAdV9eeTX3iyKlTItQ/THr/fnVeBtKkmx3aNipixXnS+J8/L88LV8Zme6XG/lWv+rGovW07rfPZw4fEci4bo0ZG5G9vOXU6ah97/gURm58j++ZtWzeJ2MIC2Q/6vtSue0xfG0/I8THNNNylksxRWF6idXrKfjVUfXm9E2NjRqEkx7LzUyyXTWmL7RRpuJPKErdao+Nny9uZcZnltqtyBpJMp11RdpvDg3Sv68tK7fcmdq979lnqt8tFuT9plq9Qrsj1F8t0X680ZD+qsRyxRELukGuze6nK20v10fNAI5Db7LN7SmjL41cPaTuLZZlPUG+znBV+NQW+vF/OT9P9xi7Je1ZXjp6FqjWp2y+USHNvsxyPUOWCcLvPpLIMdln+ka36aYXledW1fbhN5zXO7sExlc/UZN8LQn1fo3XoHCV+X0+w57GUGt8My60KVK4fvx+vyCdg1+BT35XWoo8/+u2o/Ya3vNWsBcwMAAAAAAAA0KHgZQAAAAAAAIAO5aVVINYyIf5Zxfj0r1eRU7y1Uj5qz09KOc7UIlXfXKr3iFjAlBmWJ6f7ylVaZy2mpo0LZAN2+HGazu7vltM2c8xuja/PGGP6B2kKcUNTTtv4NkmUvjYlJUrPn6LpWDeQU2XbRgaj9mtvf5WIuazSo5b+tJIJaUnReicIaDpYS1lCJknx1DRe3aNpvOWSmj4PaTownpXnkquSbF2RkllqFpfyIhZnmqKEks7UmJyJTyhn0nJaml9fDU9Ox27euj1qD2/YImIhqxpr2XKb+ZSllvJxdAXHuEufe1R1bJ9NkQeBjrWfTKhep/PuqfPCd3epKMe56VmaCu/ulrZ4jz79VNRezi+K2Bte9eNRe9f27SKWHiF50dasXOfMJbLYPH1cVnatsg3t6clF7Rv37hPLWczSzgvl2JJI0bJcamSMMdOzJF+S0j5jRj2abp+ckFapk7Nk9VyblcevEVDfnZ+fF7El9nmFm22Lfr4ecV02Lvhy30oNOka9IyMi9lNvJfvadFyOSZMXLkbt82cvidjMDN2z8iUph7RY+Wot+dqQpvtgflF+b7pGEpLCMosp6USWWSEXlbQkz6xFq74868tVtmwo5b9C+qksImcKedoUJUOx2HHnMk1jjCnk6TdKZfV79upVc9cl7L6rZUKlAo1dweKsiGWZDKZYkVIqj0lbU+ycNJVXdSKZZN9R1uLsY6jGHJfd96rKWrTBLUMTtI1NtW/cTtRS9zWmADW+J2VIFrMkTzO5d8KV98oGG7niynaU/7a65Zgsk/7mC7LvHXrq8agNmRAAAAAAAACgJXgZAAAAAAAAoEPBywAAAAAAAAAdykvLGVBaTIfFLFvqoVJMzx3zpIbfhLTszNScDCXoe4E9LWIxZh+mfy+dInuqTF1ai3XXSVflME1sIr1BLDc1S5rbpCpvPbSZli1NSo3v0DBpuLPV0yJWCCiHIK70/D19tM6lqvy9coP0ZENxaXnFaWX32g6ETBhoGZUzwGSCnrK05E5wltIalizSDKaUVi+RYHalShNrcW2g0uoluKY0Jc9XillOxpkuNTRy/XVmkTgwOChiFrtmqg0lIgxom3XZdN4/tN6dW6dVSlLTOcu03K7SwifZ7xl1HTqmvXJWjDGmUimztjxOfkDHtN6UOukms5gtqGMY+DSWHT/6nIgdfZY+33nHHSJ212teE7V7u6SN8YbtOyg2LPXjp05QDsHpF05E7UZT6mmTLA+hqf5n1GC3Dd9NiFgQ0AW3MC8tBrk1ppuUeQ6ZbrKjXJiT4+r05DxrSz2yy/quH8jrSOe2rXcSCdqfhUWVO1GgfjW4SeaX5AbIXjYZU1rsNPWdrj55HxycpZyBC+cvitjEBFmBl5ZlnzYW9Y9qVZ6T8XHKSygU6f7caMrl4iyPqhrI8d6zqB8F6jbHup/xfZW3xHKcjLIkLc3Q/ihXS8N/PlCZKXyVcVdqxvv75XXZToTqPtuosXNZzIvYYoJZ4hZkLqVts3siyxuxVQ6Jze751aq08Kz7fAyQ2+Wy+7qnxocqswLNZOlcBWodPH3BUc+DLr/Fh3L9MZZv15WmYxCqvLwa6/vaDNllP+62eMYb7JN5tdOX5PW6FjAzAAAAAAAAQIeClwEAAAAAAAA6lCsuE3LV60VviqZc+rpkzI3R1LSvvpgIyTI0rbbyDT97a9TWBoZf+coTUXu3quj5ugMHo/a/PX04ah8anxDL+Q2adhrql9MvqRxNZy8uyCmvHds3R+2tvpw6nZ87F7VDKydiA0OjUbtel9KSWoW2RVeB5DOW7V6B2BZWmZ6ORi1HTfHxeWM9PRdyC8+Gmho0XJakqnYymVBNucdxCZh+07YdmkrtYdON+lyVWFXGFVOWbBdqJdn/mh4t293VLWIZVlWxqSzWFpg9Y0NNwZYWSSoQa8rY9j76jYViWcTyVfm5HWiycUHoA4wxMWYB7HtqOjfOpryVfCtk9rauLQfIhRJJ0J549kkRO7Bvb9Tu6ZbnmsvoMl1y/Np//fVRe3Q3yYkmzkpr53EmISopy1M7Q7/XN9IrYhMTND09df6kiCVZBdi6sg5cLFJfXpyT8qIik3B4TSn99Jt0HmxtOdxm9raxGA02fX3yPrF5I7PDLkpZ7cce+Nuo7SvbRNswe+W4tDh2WV9tKFlNnUkUfaWrKTEr0HOXZkSsyi6hgFkhTy9LuWWJrd/z5LhdZnIPT/UjPsRbygaUS1ssXeGW2Y6ukAmxe4Guah2way2elNd2+8mE6Djoa41Xx82r+9JyjKSEVVVhN8bkQFzy7ehxkp3nmJJ/WczWuq76N5f1WMrqu8LkuPwcN+ryPsfcwk1PVsqXkmn67cCV12SW9Yd0iu7x9ZqUk3Gb1rqy0eUSZS0h4s8G3cpeuloumssFMwMAAAAAAAB0KHgZAAAAAAAAoEPBywAAAAAAAAAdypqF5dyacEXOANd6KTc3r0Eaz9kZqR+cmjzHlpMaJ8clrVTZkfqx7zx3Jmorqbc5nydbv6Iv9VdTj1M+weQC6cIqVanGGkqQ/qqk9G/PPk12f6VZaXO3wMSGlVAeiOUY2bsFaqObBbJbu3GntAIcTDJNrLJv5FutrUX15/VOo0Q64obSvIdMQ+io/sBtQB1l/eVwyz0nJ2OG2SAqa7smszKTqlRjmj20nppKbQgr1OdCnpNgycswZL9XUNalXCOt8xwqZaZ1HJE2gUmWl+Cp4+cze8ZMNiViyRTZ5aZ6+0SsWCHN5QvjF0RseV7m4bQD1SrXq8u+FDBr0YbKrYizXB+tR+VZT05CDcfsep+Zl9bLn/ni56P2vqv2iNiOLVuj9oG9++S2xGlsGxgi7f9Av+wvV+3ZH7V1H1xi9rOe6rsTZ0mvnlTa2HQP3TcGcptEzI2RFnf60pSIlZlVoWXLi8pi2mWdE2RZ7fW/ru5uOtb/5b33ithSgdnXlmS+zvnz56P2448/I2IvPE85HjMF2cc8pld2HamVjrmUX2ArW+Yl9vthTI4nhSrdn0ts3NE5JE2uLQ+VtS3XqyvtOl8ytJS2nOUQ6HGb55eESp3tGx6T2+KxYaC7R+Zc9PbJz+sdfnk5rjxGw4OUnzl7Qh2jJr/vyXMSY2Oez+7PvifHDp/1D/1sY7N7m2Okbj/geZWqL9bZvdRntuOphLRLNsyClD8XrFhW5f6lkikWYnkNtty3BssZKJalLTVPl9E2+g2Ww9ZQzzb1eZnntRbaa7QEAAAAAAAArBm8DAAAAAAAANChXBlrUYdbQsmpjBqb4lsuS7vN/j6aYtmzbVjEtmygKexArfOJo6xaYExOX+7YRFKGrRuk7d3CBP0+n7Lu3Sgt/a7dQlKd8QtSClQv0JRRVVVZPTdNU+Sbh2Xl2O0juai9XJXTREsl+o1KIPcnkeISLHm6uFNWu1uLlmbJ/jJQlQQ5K6Z/maTHVVOUuR5mx2Vp2Qf1D99X03N1mtYLQm1zytcht4bLmxrs9GgZBj93+WVl05anZet1+dsBkxfFVQVHh02np9LShozLK2xl8evEaNp1YGRIfm8xH7VjcTl9msm21xS5MVL+E/jyGuZVpGMxLdHjMgPZB7mtXKkkbfeqzE7XseX3ph6jseZbj35bxDb20ZT9vff8tIhlsjQm9vazqr+Lclp5foEkIzfecEDEjpwg29GHv/YfItZcpGnu9KSUjmUNyYuGD8oxt38LydGeeOJxEWs06XuWkn64zupV2QNv9XFiPRKL076PDEvJg/hsSTnfzTdui9pvfN1tInb6JN17jhw5LWInT5Ic98wZWdG0kKdrgVcwN8aYS9M0Zg3l5D24sEz9o87knYG6twl/T+31abg0TFmLamtpDlvU0vahbKgO1DUartI2xhiPXb+9vbJPd3elTTsRsnvdhWOHRGz8xLGobatnD5vdrzNJOTbOL5KkrFZn8lX1XOcmqH8n1P3LD/k4Ke9DLvscj8l7UhAyi/Ay/fawskv2QurrWSXlbAa0Tq+pnwVoXwvMsntuUVonz7Fxv6mtf5k0qKLsQutcJuRIG1u/oeWoPxjMDAAAAAAAANCh4GUAAAAAAACADgUvAwAAAAAAAHQoaxaWx2KkvbKU4I5rnLXt02KNPtccaSeXHKbvvfGt14pYKsZ0e+qV5cAtpNOylO2obZP2qzup9KTM7rPCtYVyFSYdp+368aYMWkyjaMXkhnENf9JRNncsGLhKz8102um4PH7dG8km0HVa5Gqo495uOQPGkJZO64Y5yl1Q6BxTaXnct41uppgqJV9nNqBNZeFZqzJdn7IJi8epz8Vi8hwEzOqW62y1JaLDcnKWVT7B7ALpDYsFaSEYY/0qHlN9n9kE5nqlJpKXNZ9ZkPaCNWbx5il9br5Iv3/y9FkRazTaS69tjDEuu06b6pzZzPouULrlhkfnPVQWcD7LPdDK6BrLMfF8mU/A8xJiypbx0hzlVP39pz8hYgEbh1JMl7u4JPO5qkxzetU3tovY9BSt/7Q6715A23ytut52M/vS7rzMxTrL+nllWeYvxNOkF15hOdiga1HrxfV1te5hORBeo6aCbF9t1ZPYeNKVkuPcDQc2Ru1r90tb62KZckUuXpDjwtEjlE9w4sQ5EZueJ23zxIzMGykuU/5HyHwTfXUT9vgzhh7T2f7F1COMw2KhyumzLfocqmeYgFmLqpQBY7MN0PmSoaHzsH2bzNVIxtvrf61hnayVv/3wl0Xs/JmTUbs3I69726Xrd2hA3nvKVRov5gq0/kq9IpbjfToeyHtbPE6/11R5enzMTqvnwZDlMlRrdB7nF+VYONxP2xy40na0zGx0S8xyuRXFsty3Ju+Xav1OjFucq3sOs4muVmWnLSl74bXQXr0VAAAAAAAAsGbwMgAAAAAAAECH8pKsRS9HJuSFFCsbaYcWYxKfWFJJKpjVmKvW2RVb/ffEtiipDJc69birr59beGrLRLfF94T9aouY6+jt4vujbLnY9Jieomx13NtNJuRb3J5RVxqltq3EFlzWZSuZFZduaUlBnU0bVgtySp5XlL1mzy4R27KFpEdLS3kRWy6TFKLZpN+Lx2Qf49vCp1GNMWZiiqbrte1onMk+9PnvYlafeSU94r83vTAvYoUKTWkuFWR1xCqTaBSLcuqz3RQaxhhTr1M/4BWHjTHGcagvNVUFYi5tCTz5vQZbp6tsXbltLa8Ga4yULgQrdBR0rTRKsv94Aa/Izfq/r6qGsin0554/ImI+s4TsUlVWi8v0e8eXF0QszqwXN9VlP5ucYZakKTmWWQm6PspFOR3uNen3eIVZY6QMoC1gfc6x9BjIzuUK20w6Drr/WczuVQ2PJsecMnN7pcT3mt0kXy0WZX+fz9O4NH72koidOjEetS9eIrnZzLIcP8o11m/12Mzkc35NVaNnu+dr2Ri3Ml1hV8qeb0Ldj3gZWPmtDYMk67jl4FUiFjOr206vR5rVfNSenTgng0wCW6vI/V5gVaf7B6U9Nb9/DizRcpOzcuwoMKmurWRwMS7XVhIvL6CxJBGT36swa1EuKTs/PSOWq3q00r4+ZZVbpPFbW33zezCvcN1UVZKr/uo3yxKrWB+qPttgVqaT01LG52iZ8BrAzAAAAAAAAAAdCl4GAAAAAAAA6FDwMgAAAAAAAECHckVyBrheXWuVW2rsmUjR0Xp4psF1tNbbWl1Hzz/rddrse3wP9P5wTdqKQugttNBce716AfWVpdDFcuoHeDlqfWw7yVrUCZ1VY9zW0dYniOn7aw0ZO3T4RNTOxOXxCpjue/f2bSJ2wxjZ4G7cOCBiqSwJbefmpe7x3KWJqN3LBLn63BWLpLktlqUOsdigfa2HMtegwaz6ig35vSlmSdpoSp1tmVmdzS/LvADD8npqNakN5jpIbZnJ9e7tQqNB+mptH8p1+qGyv+TLcktZY+QxDJR1nM/yBGxlH2qxEUX3eZ5D0FAWlB7PZ2BfCwNlmchXacv1e0x3ro8Dt/0NErJfH1skO9GTKp8gZLllDVv2JX7MfCP3J3TZYKq0t1bQYqBdj7B8D9MiH0I5AK+w0RQx3vbU2Cn6o/w9x6bzleuS3+vuodzAnaPXiNiP3bozas/PkYXjzLzMfyoUeA6BXH+F5XOVVL5CiX2vXJb2ivxzrS73p8EObaMux8cmC+Z6u0Xs1tv2Re2xffI+YTxlj7nOuXTqeNRemJ0SseIS2QGX1HNXitltOwlpOzqU7YnauRy1Q3VPtJklbV1p5y3+eyrfw2fXie/J8+qwcY3nl9TUpXV2msaqybw8p3Fm8ez58p5XZ/2Ij+UNdQ/wWL5CIiGtRVfcZxgN1i+7emQuw6te/ZpVv7camBkAAAAAAACgQ8HLAAAAAAAAAB3KFZEJCWlOK6tPbeHZKuaszTYzpmwZW0mWVotdiXX8oJiQS7WU+6xdCrTWWDvA7Vi1DaiQjWmZUAulALdrLFWUfINJPcpVKU2osum5QklOU3shLfv8iTMiduS5F6L2lq1k1dfT0yOWqzI7z4qas+TXTCIpp1wtJiVZLkq5T5NNkdbU/jTZvvpKYxBa9Pv6ureEdEVLDNrv/wwetwjV8hjWJ72GkhmwaeEVEkte1VjJt0Lmk8etS40xpsokWzFXyyhDtpyS1QiLUlYVXU1xS1vG1Sv7+srylFuu+ko6Vq/RVL8+DoZZAHpKruI1ucWqkp8xGZu2DrbdNuuDrLqzCVqMc1pZwMfEFjJXS137Nree1TaZPu+r8gdt8Vneh9JxWue2TV2sLWUOfIjXfSVgwYYnY83m6pK8BrsuuS2jMcZ4Hv/e6tdvT3eXiA0O0didiMnvGV/+/nrn/Djdz+rq+JVZxfm4er7p7qfKzHVbymAm50m+6rP+1vRln/JZH2iq/l1n58dT0sA6O68lNRbmeqnP7d6zP2oPbNgi18Gui4K6r9aYbaqlHjYSSdpX/oxsWepZLUbL6ee/TJqqDPPtNcaYgf7+qD08PCxiO3fuMJdLm42WAAAAAAAAgLWClwEAAAAAAAA6FLwMAAAAAAAA0KGsOWcgzuyhXrK1aItYq7yAVhr7l6r35997qdt1Odu81v25UtuSVHry9c4KjfHqS676cYXdK7NtDdWlwK3zLk7Nilj5W49F7b6c0rqydZ45d1HE6h69e1+YoPLhmSVpgcf3VTuLcSnlSg0/+y2l6WwwO8iVORfsfwLKwpJr41f+Hv/cXjkqL4bPcgbqdak/5TktgdLRc62yto7jx9BSmnd+fXMtvjHGcHe9mtJGc5vTurKY5R2K61h1nwjYOvj69LKB0vY22b4HYQuBuhKvBx63AFT9k/3PynZlP/PZtjnqXrDCY3PdQ8cltNTAwPqRPpet8gTEKlYkG9gtYsxKVw+5zCZWB5X6ny1XVcutnufAe0BC3ffirH9YaRmzrDRr64PCcqNUhP9BH9rAp3HAXpHG0V79b2CY8tw2bNstYuku0q8XivJcZkY2Ru0dO3eKmJug58pSifT3FWVjPWAx62Ht6sw1+Epz32RDcSohx4d91+yJ2mMHb4na2d5BsZzPetzKdJwXH0/1Z34fXWETza5dX42n0ip/7VbJa7zk5W+9hO8AAAAAAAAA2gC8DAAAAAAAANChWOGKOUUAAAAAAABAJ4CZAQAAAAAAADoUvAwAAAAAAADQoeBlAAAAAAAAgA4FLwMAAAAAAAB0KHgZAAAAAAAAoEPBywAAAAAAAAAdCl4GAAAAAAAA6FDwMgAAAAAAAECHgpcBAAAAAAAAOhS8DAAAAAAAANCh4GUAAAAAAACADgUvAwAAAAAAAHQoeBkAAAAAAACgQ8HLAAAAAAAAAB0KXgYAAAAAAADoUPAyAAAAAAAAQIeClwEAAAAAAAA6FLwMAAAAAAAA0KHgZQAAAAAAAIAOBS8DAAAAAAAAdCh4GQAAAAAAAKBDwcsAAAAAAAAAHQpeBgAAAAAAAOhQ8DIAAAAAAABAh4KXAQAAAAAAADoUvAwAAAAAAADQoeBlAAAAAAAAgA4FLwMAAAAAAAB0KHgZAAAAAAAAoEPBywAAAAAAAAAdCl4GAAAAAAAA6FDwMgAAAAAAAECHgpcBAAAAAAAAOhS8DAAAAAAAANCh4GUAAAAAAACADgUvAwAAAAAAAHQoeBkAAAAAAACgQ8HLAAAAAAAAAB1KW74MjI6Omj179pgDBw6Y3bt3m3vuucc8+uijr/RmgQ7j+/1wbGzMXHPNNead73ynKZfL5gtf+IL50Ic+dFnrOXr06A9xS0G7gj4IrjTFYtFks1nzK7/yK9HfLrc/ce677z7zl3/5l1dq80AHMzY2ZsbGxszevXuN67rR57e//e1XZP2WZZlSqXRF1vWjhvtKb8APi89+9rNm//79xhhjHnroIfPmN7/ZfOUrXzG33HLLf3rdnucZ123bQweuIN/vh2EYmp/8yZ80H/vYx8yv/dqvmbvvvvtFl0ffAlca9EFwJfnHf/xHc8MNN5gHH3zQfOQjHzHZbNbcfffd6E/gFefQoUPGGGPOnTtnDh48GH3moD++OG05M6C55557zK/+6q+aP/3TPzXNZtP81m/9lrn55pvN2NiYecc73mHy+bwx5nv/8Xj3u99tbr75ZnPdddeZ9773vabZbBpjjLnjjjvMf/tv/83cdddd5o1vfOMruDdgPVKv1025XDa9vb3mYx/7mLn33nuNMcY88sgjZmxszHzgAx8wt912m/nc5z5nvvWtb5lrr73W3HzzzeZ973ufCcPwFd560A6gD4IrwQMPPGA+/OEPm9e85jXmn/7pn4wx5gf2p/vuu8+8+93vNnfddZfZs2ePue+++0y9Xl+x7n//9383t912m7n++uvN/v37zUc/+tEodscdd0S/u3PnTvPe9743irW6dwMwOjpq/uiP/si89rWvNb/4i79oHnnkEXPw4MEofvToUTM6Ohp9/td//Vdz0003mQMHDpixsTHz+OOPi/WFYWg+/OEPm3vuucdUKpWXazd+qHTEy4Axxtx0003m2LFj5k/+5E9MNps1TzzxhDl06JDZt2+f+b/+r//LGGPMb/7mb5rbb7/dPPHEE+bw4cPG8zwxfXno0CHz5S9/2fz7v//7K7UbYJ1x7733mrGxMTM8PGwsyzI/+7M/u2KZI0eOmJ/92Z81jz32mLn77rvNO97xDvMXf/EX5oknnjC33367uXDhwiuw5aBdQB8EV4pjx46Zixcvmje96U3m/vvvNw888MCLLsf709ve9jZjjDGPP/64eeihh8yxY8fM4uKi+fM///MV37vhhhvMt7/9bfPss8+ab37zm+b3f//3zdTUVBQ/c+aMeeSRR8zRo0fNV77yFfPYY48ZY37wvRuACxcumK9//evmU5/6VMvlTp48ae6//37zqU99yhw+fNg8+eSTZs+ePVG8VquZd7zjHaZSqZjPfe5zJp1O/7A3/WWhY14Gvv+frc9//vPmk5/8ZKQl+/SnP23Onj0bxf7kT/7EjI2Nmeuvv95861vfMqdOnYrW8Qu/8AsmFou9ItsP1ief/exnzaFDh8zCwoLZvn27+fCHP7ximauuusq8+tWvNsYYc+LECZNOp80dd9xhjDHmZ3/2Z01PT8/LucmgzUAfBFeKBx54wLzrXe8yjuOYt7zlLebs2bPm+PHjK5bj/en7vP3tbzfZbNY4jmN++Zd/2Tz88MMrvrewsGDe9ra3mf3795s777zTzM/Pm2PHjkXxd7zjHcZxHJNKpczY2Jg5c+aMMeYH37sB+KVf+iVjWdYPXO5rX/uaefOb32yuuuoqY4wxsVhMjH9vetObzNjYmPmLv/gLY9vt8wjdMcKpJ5980uzfv9+Mj4+bv/qrvzJ33nnnimXCMDSf//znzY4dO150Hdls9oe9maBNcV3X/MzP/Iz50Ic+ZK699loR4/0KcgzwwwJ9EPxnaDab5pOf/KSJxWLm05/+tDHGmEqlYv7+7//e7Nu3Tyy7lnvliz2Yvfe97zU/+ZM/aR588EFjWZa54YYbTK1Wi+LJZDJqO45jPM8zxvzgezcAvE+6rmt8348+8z72g7jrrrvMV7/6VfO+973PdHV1XdFtfCVpn9eaFjz00EPmr//6r81v/MZvmLvvvtv82Z/9WaTzqlQq0X8e7r77bvPHf/zH0QCztLRkTp8+/YptN2gvvv71r5urr7665TJ79uwx1WrVfPOb3zTGfO+/usvLyy/H5oEOAH0QvFQeeughs2PHDjMxMWHOnTtnzp07Z77zne+Yj3/842vS53/mM58x5XLZ+L5vPvrRj5rXve51K5ZZWloy27ZtM5ZlmW9+85vm8OHDa9o23LvB5bB9+3YzPj5uFhYWjDHGfOITn4hib3zjG82//du/mZMnTxpjvvcSzMe/3/md3zF33323ef3rX2+WlpZe3g3/IdK2LwP33nuvOXDggNm1a5d54IEHzJe+9CVz6623mt/6rd8yY2Nj5pZbbjHXXXedufXWW6OM84985CORHdV1111nXve615lz5869ovsB1jff12vv27fPHD9+/EV1spxEImE+/elPm1/7tV8zN998s3niiSfM1q1bX6atBe0I+iC4EjzwwAPm53/+58Xf9u/fbzZu3GiKxeIP/P7tt99u3vrWt5p9+/aZ3t5e8/73v3/FMn/8x39sPvShD5lbb73VfOxjH1uz+x/u3eBy2LRpk/ngBz9oDh48aF772teaXC4Xxb7/zPhzP/dz5rrrrjM333yzOXHihPj+r//6r5v777/f3HnnnWZmZuZl3vofDlaIOWEAAAAA/JC47777zMGDB8373ve+V3pTAAAvQtvODAAAAAAAAABag5kBAAAAAAAAOhTMDAAAAAAAANCh4GUAAAAAAACADgUvAwAAAAAAAHQoeBkAAAAAAACgQ8HLAAAAAAAAAB2Ku9YFr30Vla/vTnWLWFhhbUtWIuzf1B+101ty8sfZr1uJWNTecM1OsVz5xMWo7atKh4UqlZHu6R4WsZ7uatRulmUFza4EFdEpLtI6YyNpsdzg6BBtb6MhYuEiVZ8bTjjyextoWxZKhahdzVfEcpkElbM+Pj4uYql4hpZz4iJ28cwZ2q7AE7HRbZuj9rv/21+aduDTn/1C1OZlxDUvVuKekMZZL6eP1srtoh8PgtU3RH5NrYPtwA9jV1oZjYVh8GKbsYL7fv5tV3KTXlFCQ+OJZeIqyq//QMWCFrEfRVpdQ6vjB/K69Oo0rtYbFGv4cv3NJo1flYIcp+cmLkXtoFYVsYlLF6L28y8cFbFqoxy1//j/+79/4LavBx47sRC1LSOPtWPTMbUc+T8+2179fNoO9dtKke5n5WVZSGloaDBqZzK9IuZbNAA4gfwt27JZW20H+9xqrLHs1WMB27dAr36Vr+mfCvgXW8XU+pusv+sjbPm0on3quWe98uV/oXuw48g9ZqfZWOogWqI7trrXrW3c8ZpyHXz8OPr8cRFbzNOzl7HlM1o5pDGi4NFyMScmltu2eTRqb9m4TcQOXn8waqcSSRGbX1yM2nMLdO325/rEcvt3U0X4hJsQsZbHhIWCFdcPfU7E9b3qxcHMAAAAAAAAAB0KXgYAAAAAAADoUNYsE0p1kWQlaEpZyvz8XNTu6c2KWLVI0y+Vi3Kat28rSXCaHk0pB5acAi37JAWqFaTMpp/93FD2jIgtz5OcaWRYSo8q8yT5mRk/H7Wv3XWDWC7t0CHyPDnFn8jS1GlPn5wiKvu0/mQ3bWTGkcsl6jR1NZiSx64rR9OxhfklEXPZ9GhpuSxiM3MLpt1oJUVpNZXGp5/1cmuclfyhwPdnrdvPpTk/iLVOubY6PrZtv+hy3/vMZAkr1EvtWccw8Nn/TtQuWkJpsEI0wNru6qG1HjYth+CruJxDL9YTvmhzxVdWV6oZ3T1dm+2rw/qxLxcMAhrfLXlrMUGzHrWnLxwWsflL56J2bfaCiFUaddNuTFeYrEYdQ64Eijky5rqs3ypJYjxO95/jzx6J2s888lmx3M5d26P2tdf/mIgNjO6P2p4l728W1+pouRLrPDbvjC062Qqxpeh0ct+4dMIPaDlrhdySjXNKxmexz4Ev1x+zmFRSSVdrFep/7SITcl3qK/oU2VwmpGRda73P8vuNvhfxe4qj+ncmQ31u48ZBEduyfUvUTme6RGxyhiSIl6ZIir5cKIrlZi5NRu2lOfkcVq/SM21Xl5SYzy+TTKjCngd3bN8hlssV6LlvODskYj2pXNTWMjuvQYNltSifrS023ib6IRMCAAAAAAAAtAAvAwAAAAAAAHQoeBkAAAAAAACgQ1lzzgDX4/UPS2ukaplZ7in7JovZyDXyUsdZGyDtl52k7zW0bi9NWix3SYpKe9yJqH1wn/zeC4f3Re2+1FUi9i9PfDxqb7matPndGal362P+p4241Gylk7RdmzZLW9NppkHLF0jDr7WsAbPJclLydExN0DpcpXPs6iH929JSXsQqKqejHbBaCaPXaFG3HrXsXDupdZTSklRr+i9/X1fmBfznbeDaCmv1481j1gr70FbnYjWttP4Os1BUFp5cD811t9/7zMfjVtvBtl/9i2jNOS1aiu1zW0n6u1criOUKs6Tdnb94UsTmLrwQtUuLF0WsvkT2l8mmzCVbsTFtwLf+47GorW5FxmLnIW6k/XaC5ww48v7M+9WlM09G7dnZSbHU/NJU1H7h1AsitmkH2Ssm+8fU+pleuYW9ss2sKque7N/VJsu/01r1gM67Fcr7XsDyKlLMLjIdkxrqCstL8dW1G2Mf9XXXm2XrVAkzHtuWu27ZbdqBMFzd0luMLCvuI/xTq3wqltfRImfAGHWeRQKe3MZ4jNbT3y8t8bszu6J2iuU3VQfkM1qTbddCXuYMnDl9Imrb6ml6lln11tl2zRfnxHITs5SzuqV/s4iNXXN91M5mMiJWWKLchvPnZM6Uz+zm33TnG81awMwAAAAAAAAAHQpeBgAAAAAAAOhQ1iwTcti0jZORFdp6mZ1T0pexlEWfN23ZKmIbdlI1t/kqTUt6eTnNmY2RJCY7KKegGpNMhjQpp+Nec9PtUfvRx4+J2OzMdNQ++BMHonZvl7Sf2jVIVk9hr/ztpUIpar/wtFx/tZKP2uUSyYQy/T1iueVlmuppVOV+N9gUV1iW0+DVIn32XPlON7OwaNqZFWKHdSj/uRIIO8vOPAQvK8ImUUkGbC5LsbWci6/DUTFaT8Cmv7VUh1eRDVX12eV8PmqXK3Kc6Omh8aZLjW2uw0vA0/rL5ZJYrl4n689EQkos4qy6pa0kKAGTADQbdOwqJbmNUxfORe2587KC6PwlmoavK/mj79FB6spKCUDalpU824H8NEl1YkoOFmfSF8eWkpWkQ/3FtmTM8Unim7LoXtTXL6XAlTpJdZp1KaMozjL5Vl31MSaztZUlZMOj89ngVtzqqaSHSYi3jAyIWK1EfdVW11alQpbbCZuOT6Us+1GtTPvTVBahvk/LujH5bFMr0rIZV8ZiLao+twO2Hp/47q4o/Wyt0l6dlRLV1WWM/Pe0/Ta3rB8fHxcxm1WXdlgF+ZHhEbFcTx+NoaWqtHFfWKJnrUvTsmp3jo2py3W6tubnpEyosEjPhyfM8yI2Pnk2and3y2urUqVxdEE98/H7AGRCAAAAAAAAgJbgZQAAAAAAAIAOBS8DAAAAAAAAdChrzhnIZkg3VVO6OjtNermF0/MilnFIuxl4UgeWYtac2zZviNonjx8Vy12zjXINtu+WWsZ5h0o5Xzgu9WjbdtFvLyxLW7rR7fR7bg+tI94rNf2NOmmvqnNSl3XiEllC5atSZ9uXJg3rxs1UErtf6b6Wzz0dtRNaDMdKxU+XpFZtnmnE/Jqy2irVDADgynLoCbJ2XJ5bELEY08sXitI6M5EmS7j9B24Ssa7uXNSeYVpSrkU1RtrndXXLMcpjVoyLC9L6rn+AxoLe3oaI8dHSYXlHly5Jm7rFRVrn1q1bRGzDho1RO6mskXkORMhCqS5pkde/kdnpBXIcLZXpt2fPnRExn+UyZJRdpBe0XxLNGYuOfRjIe51Vp8/dMamb7g0oL8C15L0hwY53in1vaGhILJdl+SbLKqekZJFF40wo72/d6SSt35XbVV+6xD7R/W1zLiuWsy3SfW/MyHXMslyG+UJVxHgeT6NOfbGo7tXdKdrGuC21//WQPsfV01KK5c8szMv7c9iW/2elY7+6ot8YE2pr5cvPGVgJywtQq+c2pIGKBew6KalnqDn2PMfTHOypCbFcL8sZGB2V49+mIcovOHb0rIhdnKa81IEN9Nza3d0rlquz+8VSMS9iRw4didqeJXNKTZw2uhnK2BLLI1sr7dhjAQAAAAAAAGsALwMAAAAAAAB0KGuWCblJJvdRc0QBs99amJfT52Vm2XTxkpTqHD1OlQx/7T2/ErW7KnKuJ7VM0yj5mpzic9n0ebVaFLFv/ccjUXt6YVrEdu3fEbXjzIVuriHXUWU7mwnkNHvvIE39pJ20iKU9mnqMsUqcF87LY1Bj1oID/TkRa7KqjJNq+r/IqjJWl+U2Z3xdZbJzeKmVcfm07kpjNG7/KPtmyKY9XWWHZvE1rbBbIwJ2jfjqkuTVbOOBql7Nftu3LqOYOGM9VmV+pfjqFz4XtS+cOS1iuW6SvpTKyyJmMUvCL3/pCyK2dTvZIQ8NkXSxqYp9LhdpintgUEo4MkzCsbQkx4nxs7Sdm7fI6pYOq068XKDv6UvowIGxqN1oSEni0kI+ao8wyZAxxrhMduIym2Q3IaUkjksW044tx9hFVmU4oari1pokeXFdOebFYu1nLVot0P4GSivhMElWxZH7PsMu8dDI2EbWN8eGSNralU2J5UJ2j88HUqp7rkDSCc+REjBnkaQ0SUdayiaaZBPqWNQn3LLcRj42T5ySY6Ad0n13tqJsb9m/OrPMUtW3pcyu1KS+Y6nRP3DpPj6UlL/dnyJZUqJXXrBhG1bAtlrcw+R9ZG2VzltFLufoiUshlP/fjjHZ187RXSK2eQudsyqTHOYXpNR9ZppkQ/3KGn5gYDhqHzsiq6d/67skK92yleREt7/qFrHcTQeui9q+OjxzyzQuX5yT8s1yk577yp58Lq5VVUX2NYCZAQAAAAAAADoUvAwAAAAAAADQoeBlAAAAAAAAgA5lzULjMEaawXpZWRw1WFnnuNTtDfSQvnDftftFLJUgfWE2RptiDQ2K5XyHYhdnpW1fNkH6wtCTetbHv/HvUXvrLfK3E8O5qJ1kOrOkLQ/J6SLpVLNFqRnss0ivWAmlZVuhSBqujT39tH5lXTrELAk9pQP1mAx247YNIlblZbZLUh+WL0ndbTvAcwEuR0+41hwCrv3XP8BlfCvyZfh2BVK3HAZ0jiyVa+DYAYux9Rmd78GjytKXLRusdT+RI/CSadTo+i8tq9ylgMaQYkWOj3WftMWlitSjnjxOmv4Msx0eHB4Wy13LdKX1kixnf/EMlbA/fvy4iG3YQONGSunx+/toXNq+gdqbt8rcgq4MbVcQyP8fVdi+XjxxQsQGRmgc7+pldnrqIrIdWmc8Ke8fyQyN725M/nYqRcsO9Eu7vobffpptx6fz15eW40QiThr/c0vyPuWye2tM5Vb0JOmemUqSvtpxlU2sTcez3pT9KGeTRWgyIXMNHIv6laXGthi7/6ezuagdj8tz12C5gPGEzEmoNal/dMuQGcrSGNvj0j0yrfIheHcsV+W+LTFb3bl5afdbibPxWOX42EZalLYFPrMWVTbo/BjqK09Yf6r7oLhvsXtTTK3FYZ+b6gds5ifaZcs+xp1oUzV5XQz10ZjhdDHrfNXHnm/S93xPriPusN+Oy3EtxnJMlxcpl3a5JJ9hYz30HNmj8n1GBimvZucmmZM1OUfPppfmp0Qs0ZDj6FrAzAAAAAAAAAAdCl4GAAAAAAAA6FDWLBNKdNG0Q7kgK7nFA5raiGfk9MRyOR+102k5BXLdtXtpnbM01Tjc3y2Wi7FKxYWKnCOaX6b1O0oCMTJC00BBKKf/5qs0VdPdR+uvqyrDPqtWyC1CjTHG9mid0zPS9s7yuaUa7fdwr5zOTjBpSVCT8oIeVokxX8uLWF8XxUq9ObnO4faz1eOstP78z2NZrFqqpexDmYzMUtZlDvus7T0dh7bUUra0QYOmrZNMKuY4cgq7xqwAa05SxJy1OZeCK8TCMo17s0uy2mm5Rue+XleVfm3qIzFlQVwp0fgyeZFkNjOTsgrm3AxZEvPKp8YY47Kp8bwavwpzNH1cnp8VscFBknDs3EMWp1s3SZnmwgRV1jz6rKwO//RT9HlhSUqn3veh/0/U5v06n5fLLS+S7Gn85HMitjhN279xeJOIhTVmrVeQlqpWvP3GwBq7/zielEP09pO0YUj9j2+pzMa2urShTsSpT7gO9atGQ96LYi6dvy3dcny82qZ1ZlQV6niMxjlbyYuWC2TB28WqssZyObHcmQm67jxXPhtwu8s+Ly9ipkzb5XdTf7Btee0uLVD/y6t7sAlI/pvt6hehErMPLeTlcc31yCrK7UDIZMyBkgnZTMrN5UT6s/7vsy9uYnQ8VxQx5s92trzjex4t3J2UEp84ezpoFOW4MztF592fo+fBsCb7aRd7NrAvqfv4cbI+vrtfjk9X3/GGqF1jz779Q1LynViiPjY+L6sYx5ml/76r9ohYT4r2tb9rQMR2bN1pLhfMDAAAAAAAANCh4GUAAAAAAACADmXNMiGfpcv7tsyobrBs7g3b5BRzeYrcMyYunhGxUoWmtPdto2mOgZyc8iiWaBqlUsyLWD2gKZxGWU7VLVZZVc05Ne2Zot+Y92mKcqgu56e2xJnjkZHMLNH2x5R7RaVEU5FzFmWSB6qCZ8D2raEcSkYSTFLQkOu3mGPQjr6ciPktKwCuf15ikeHW62T927KkNUTApDpajpNg8rNmXbq8LM6StCNQMq/eLpL8FNnPpfukY0AsS9Vmq5ayy2BTp67R86rgSlNk08ezy1IqGSsx5yg1xx1j09pKrShlDj00JoWq2vTMRZINZZQbSpxJYqpVOc41arQt5aKcgub/C3rrz47Rcky+YYwx//zxj0XtI089I2Jldhg2jl4jt5lJJ/tGqAJnf78c3zMJuhaSodz+SXaHckNdfZ7G2KUF6aax/BIqcP6ok02TQ03Ml/2jXqD9f/uPSTeoo6eno/bZ8fMilgiZU0+cxp6UcgWqJal666ET8tgWytSHbVcOzjZzLwqNlPgETXIadIrUFwcr8rdnC3Qf9JtSDpb16JlCCvCMCZp0zSSWWLXZqjx2edZXMknpApTh0qlQPl94IXv2aMgL++K0PM7tQJM9V8wvSlc0flvs7ZLnOe3QMbU9eW/lLkHG4f+bVpWgmdSyUpHnLxmj8WPL7qtEzDbcyUiuM82G6foM9avjR46J5awy9Y/aoRdE7NxTJGsMk7LfDu7eGrVT20i2k4xLR0l7hsaxkT5ZXb6eoO3PF2T/m5ig8bURyuO6Z+9ec7lgZgAAAAAAAIAOBS8DAAAAAAAAdCh4GQAAAAAAAKBDWXPOQLPO7JUS8h2iuJiP2pmszBnYtJN0iLkhqRVdZPp/N0PfG1YViNNJ0ohdmloQsZhPOrCKkVrGMCQt2abdu0SsmiSNVdmldjMmbfuyNundLKXLqsXot1NKLzbM9nU+T9usHOFMgpVNLClNWD5P2t3CrNTx9rCKkxtyMpvh4oy0JWw/rnzSgMgFCOX6Q1Y507WkptlfJt3exOGvi1iSVdLcOCJt6TYN0Hk/P0H6y/wleZ4zG+j33NxWEQt/RKtcrrXq83qDW4TqPQxY3pSrrO+SKRqHGkb2H49Vt0ylaeyxlHVflVVGLeRlBUvuhuj7ckhvNGi7Eik5RsUmyFbyyBGqYvymO28Ty+3ZTXrX8WPSWjRkuTZuXOZKPPjZf4zaP86sP6/Zs08sl2FWqY4jc6pCn3ZuKS91ytkkHaNAVYCdnZHXUTuQcSi/bEN8WsRKC+eidnlW3kdGWRnWrfv6RGyon8aU82dJf19R5+Gq62isSY7JvKZT89Tnnjgtz1GjxPqEI/umzapZ37qTdOY//WNy/f/0TcqHuHT+pIhlDd3rujIyp4pfJXNsO+o1eX1Wfco2iCel3r0c0DYXarKTNdmu6ZyBZkN1yDagyZ5/FhalhXGxSslD1mZ5n0r0MIt3ZdsdsJHUZ/kEjiMflCoVWr9vyWe03VdRnkBXVj4LVes0vubzcpvrZYpNzlIf++cnviOWy09QH7u+KMfv3Wy/m5a8Zkb2j9L279lGywXyOmg22TpTcr8tm47XzKx89p2fp89uSj4LNOvKIncNYGYAAAAAAACADgUvAwAAAAAAAHQoa5YJFRZoOqSrV07FeEmaItPViZMbaGra29Alf5zNyC1XyV6p6Cl7r25W/XDrsIjNLNGUaMyX0+f9SbJYS/ZImYbl0bKNIq1jOS6nVyxmsbY8NyNicZsO38AGWVXOidM+dMVoOiqXlMcu4dE0WfdOaQmXdGnZckke1242JaqnKP1me8o0friw9+JQXhYhq/BqW1KKNjl+JGovnJPVU3cweYXnySnsF06ditppZq3YpU5d/tLxqN2jqiuGcS6nU/ozcMUpMx/N/LKUoeS6SX7hxpR8i8mmrLj8/4vrsmVZSNuTGo+moBO2XEcszqrDV+X3ymya3Fe2uOPnzkXt//U3fxe1N/bLKuk7ryLL0FTPf4hYlUlXFip5EZu6SOs/cYaqKw8OSqlKT4bGWFdVqTU1ui9Yoawcu3Ujjem9PfLamJ5uP6lkjWlMx+vyftbNKv0WFyZFbNt2qi59YO/1ItbLzsWpYbqHTU1IGVIvkyHsHZXH+qdyNA59+7SU2Tx+hGRDk3nZN7u76br4hTtJRnHtdiknfuQIXWvfPiRjcxZJfNyiXH+V2Xj//9s7syZJkus6x5aRe1ZWZu1VvXfPTA9mBsAAxMJFICmCJpEgYRRND6TM9MYX/QX9Hopm1BMlymQkxXVEkAAGmK236b279qqs3PfMiNADzPLccxvdU0OREpl5vyev9shYr7tHtB8/dyCCP4qUFE1IUuo9vjbPg21vpLLPxxFkLdOIZUFeZv76Y1dIerI5lhwmQhqpZaJTIS/yPO6E5JbJFO9e9QZLYsZCQnT19bepLiVkhq0BvycdHiOOnz9/TnVrA5zLp8Ii9OiM+/ah6IsP+1x3NRBxpaR1wRbaVuYKshMnSqbWF/sMldzHFTHs8e6dTBbSy7G2Gp4Mnc+LzQwYhmEYhmEYxoJiHwOGYRiGYRiGsaDYx4BhGIZhGIZhLCjnXjMw7UOD5BcyVFculmflbpe1Su26sDn7dI/qpIXoWPjj/cF//SPa7uaNK7PyWpX1po6w4Dus8ZqBW/cfz8rv9FnrHQuNVVAQln4Xt3k7IYH0h2xplRLH7nZZS5bOpsV2zku3q3dxzpd2eN3BhtBzVpbepbrxCNraqUqvPhiwttb4bNxEajxf/o2cjFmTuBQirpIVjo9GA1Zmz5Q17J2HT2blr3wBmt5332QL3HYbmttBjTWPhS2kNY8cbpN8DdA1KtdUJxb/4Kp07RJbheI4ToS7ECjrz0Ro+p2Q4yCJ8bvphIWfmRBxVxTa+WjEGuSlNdHvqYfYbKIv8NVag1icV1/p8Seiz62foW7/UFl4Cn1wT1mXtsXlNDsc45HQaY9FXeOM9fx50UHevMy2hKslrDMbKWvH3d0DUcdrsS5ss6Z+HhgKS8WhGrpHLsbIj54/oLprb5Vn5c6gSXWthxiTd7awZu3C5hptlwjtfLvL403goQ/86sUc1X35yus4R+W2mc3iGqoF7F9q/R3HcaoltJF8kdcdjiZ47hOHDzD1EVee6N9d5UPrCr17FHMfGIh1Kl9YT1Ndb4JtC2l+77l/pvvjOUDo9kc9fsfotPEekw/4PlWEpbGn7r10I06L517XfVABzz3X43t9eAvr6pIU98vNk1Oc15DjtnEEzf0jsZ4gVjbxXg5x2lPjf0to89MqvmVXnBLrOL2BsqgXayWcgI/tC/vwIM39d73RxD4DjtuxXnt1DmxmwDAMwzAMwzAWFPsYMAzDMAzDMIwF5dwyIbnhsMVTJcs5WNElBbbUGgur0dNPnvFOVzC19PY3YHl25DZps5rIuLmzc4nqcg6swLRMaPcZpqOvVNjybLlQxjmPMMVy1D2k7SYik3AxZNun0QBTRKvlMtWNW5imKS3j2P0p37swj+mvToczR65VsY++kjmFIlNyqcxTp9Uqn4vx2SRSCKOyJEr5TKSe0ZKPv/PrHPsnNfyu1+epwc1KeVaW0rdkzM/ZH0FeEYxYhhGP8beX5qYcx5iqlVcTK71PJO0sucpxxS/dhKchveQVUqrk5XKjf8mUc7jmzbLK9Dvszsq9OvdDjpBR5rMsZ3GFLfDgDNPWxSL3NeUl/K6rZICJh2nmC9tsC/rFErK5Fgo8Bd0ZIHYbQt556RLLFU/qOC+dhXUoZqNPDth6eSyy1qcC3LuNNT7H1y5t4HxvskyoILK8f3DrMdWdtHDOYZalCVtr8ycT+o+/BFltX1kVP92HJLHf4Xtx2oZk5b2PWKqbDhADb13Cc95Y5ftXXYYkMRtwbEZj9BztMUsxXA/7X13n557NYgyLE8TKwQGPwanew1n5m9s8fv7tc7QL11d90lRkBRcSIle99Qj1n1NmhZ/z1gbu87fe5PbTlGPBmC3JMzkek+cCkWU9VnLHpsiGKyXljuM4GbHtpTLHgD/AfcsLS+9cluMvnqIfCFV28Yx4L4tUCIQiHEdtfkbv34LdcfsE7SdRMswghet+Y/sy1eU62Ed/yPuPXLwPhOJ2ZdUg3BdytkRlr3fFPlyP3y9Oa5BS5Qvc5lsqS/15sJkBwzAMwzAMw1hQ7GPAMAzDMAzDMBYU+xgwDMMwDMMwjAXl3GsGPKH5rAttq+M4znIIPeHWOmu9HjWwbTZkXdPJLvSLhV/+xqz8G9/9NdqukMHvekPWTY16sI6qKD3aUlWkLi9yGvOq0H4Nhf1eRdmmSq3k0TNe85D2cfu2Nq9Q3e4erKoefro7Kycst3TWd3DOaWWLNRba6yDkRyVtKzM+16XT6iDGOZBaPbVmQKRXHygb16bQGgYRawZjsZ5lY4Pj7+J1aLnXlsuzcvfsiLZrnEKHfWH7NT6vCTSrboot/WJhQxgJkazU5jqO47jOVJQ1L7ckfYUL6dzy737r67Pyw9eWqO797yOd/ccfP6K6VhPrQKKY+6iNKnTgKyIOikrfH4g1IX6G4yy/hN9VctzHZl1se+0S2zJXqtDnZ1awFuv6m9douz/8L78/K8ejM6r71lffnpUHNzeobvcI8fngKeK61WFN8eMDjBF95T+ZE13Z8RFrhVMZ6MVjn5/HSZ3b6TywOrkzK3/xna9TXe5fwZ54OFGa5A509iOnTHXNnrQ/xnP4y9untF2tj+e3ptYF7lQxZlaWefzcyKOj2Knze0Mhjz6qdgqb2Lt37tB2T/ew9i8pv0F1TozjeR6Pe1kXxx5FiKskURakon/cWeG63/mlq7NyEDWpbq2E+Mtm1qmusvX5rR3/uVPvIFZGyrry8BT9QuPsCdUd7J3Myq9dUGuCAoyRJQfxcE2tWdkpY92l2+b+o9VGrA77rJWfdLC+qtvitVbpA2juv5TB+DnIlWm7OEB72nL42E2xaKqf4thfdcVahhTazDDLg2dcx3qz6RGvu+r30H97JTUmiLU7gzG/szx7euB8XmxmwDAMwzAMwzAWFPsYMAzDMAzDMIwF5dwyoXQR0yhtZVvUOsMU0fIKT5VsX4FN3fCMbROXlzAttCqs4G6+wdPUfXG8sbJNSwIxxTLiqeFUCtMqS2ss45l4qGv1cf4rOZ6KqZbKs3L5NT72s8eQDf3ZX75HdSc1TI31hO1gEvL3188sfRHnm2G7uLqY3i1n+byWxLTZqKtsRzPKH834nCgNjEgluLTKtosPH6BdTJs8fX7xMjJ6VjdYQpEvYYqvKGxiT6c8lTl5ginXRMSR4zhO0ccU5XDCdUmI8xo54rxcvrZAZIRMlFAoFvIo5xVWoovCp/dheXhH2SRPp+gbNje5/zptQC4ziVimVRNyv34Xz3BJZVqVMq2Jz8/Jy4gMmXmeLl4roT8+UNIZX9grv3nznVl5NOQYfHAfso1SkfvA169ewDkqmVyri8ygoyGm1+sNHj/aXRxvf5+nyXNiev3C9hbVTUVMHh5zxlJvyuc5D/zNJ5DZHNX+mOquXoLM69JFHutKYgz7D9++QHW9DsbdY2HNfdjjMeTTI8TO7inbK98/w++a+xwDnrA/Xkmz9CgvY2mM5xepZ9ee4trOjtki3BXyWTfm+C576Ota4v89hxH30wXxu3LzPtU9/xBt/vEDzgD/i9+BnLm8wjK1VIHb0Dywf4p70VRSnXoLfdfjXbaGPTxDDNx+znWVMjJdX16GZFJnyj59hrgqHnD8TWP0qRklr5y08W7UOeV9+nXEnMy4nXmDpUxtYUsb1/j8a6Lv9assBXbS6HvHQp4b+9xGmo+ezsqnP75FdWMxJq9/+S2qu3QZ7WIU8/icTn3+d0Ab4Q3DMAzDMAxjQbGPAcMwDMMwDMNYUOxjwDAMwzAMwzAWlPNbiwrLzfUdttFaF5ZQ2h5z5Qa00i2VRrrxCJZh/SG0rp5K1zwaQxu9LizwHMdxWh3o/U7brJvePYAd2tZj1vi2xNqAjXXoxZ494e12ctAXXnyDtZheCJuzg++/T3WPn0JfeOMGLCGHU9Y1JkLrlc2xPWTioa41Yg3idIL9pAK+55mA9zMPJMJmVZYdh60//4mOjmOleV2HWxRrCEasBXQz0H0PI7asyweIP19Y7pZWeG3B6hb0i/kcr8cpZXDdvSZrpkcDtKegAF2w73OsBC62m6r/G4jFWgO9nmARvUU/uQfN8yd396kuJ9b79AccB04a7bGUZy1npSis9YSFsu/x/c2J/tcPWPOcSyOW1ipsH1oV9ofpNP8uDPE718P+jw/Y3rbZRL96YYv7/tjD9Zwcs+3o/j7s7eS4sLbM+monRgwWQraH3FzF9QQpviejCHrgnJLIXtjm85wHfvAMF3nc4hg7OLs3Kx8ec2wWC+iHyiW+91kRA56wKrxW5TUrr6/i+Y1jtbZthH0+P+pRXbuL51fr8HqZ791Gn+W6Yj1IzOteAtFnJapdJEJbPlR18kyKIe5dzmNbzK+uY2x9d43Hzt1DrNl68vgx1ZX+7q9m5a/9/M9SXaeJ83Jee9eZB8pl0be4vE7RdfGMMhnW7cvhutlke9l4jDj+5k28X71xndvv0/f+fFauPz6huhtvf2VWPhnyWobJGFHg63MWtt1dsZaucYWPPSjievIT3n9qgt91lfVnJ8SYmRNr8zIRj6V+S7zD1upU1xZv6AW13qy0JtYoeNwBej/FKPyzsJkBwzAMwzAMw1hQ7GPAMAzDMAzDMBaUc8uEJmIWwvVY8pAR09sDZTu6HcJe0d/krHJjYSl31sN0TnfAUzHHIkPbrR+yhefeEaaM7j5m66+6kA39/Q++R3VvXr8+K6d8TEuWVAbPQgp1fsxSnUq5PCtfu8LypXt3MW1bO8Z0VKvH1xaLqc233/oO1zmYzqw3efpo7wDZm8sFntId1XEvf90xzsOLMhhZiWc0dljGEOcQ02OPrfMG4nfxiKemU11MjwaOmF4M2Tpv+9qbs3I2wzKh00PE+8ERt7v+BPssVmDZVllna1Q/j6nfWHcHrrQkVfcnWTyZ0FTIpqaJulcB/i4ucx8SpvG3lnqtLuF5r1fQjq9fYhvNyxcgH/OVPawv5B0xd82O6+G5RQ5PM4c5YYsXIh6fPucMyiMhe9rZ5PhZrYgsrN4a1f3ud395VvaEtGk8YYlLt4XYDVU7LImYnyjb3UwO2xaK/DwyZSVFmgOaIvv5cMyygKM+/r7X0FmA8dy3V9mWcbkiYklYtSaJsqsWY+SykroVypANraT5+Q062H+vw889meB5RqKviZSN8UhYga5nVPZW4bl7NODgj0SbjIa4niBgKdNGDu8JuSwf+8pFZAxfX/8C1V2/gnebSoH79/4RS+bmgTAQ/Zi6T3mRwbfdYjl4Wshg82oMc8d4Lt0G3mlqpyz57o0xto5UbN75u7+flX/wnDPvukKW/aUix+31qejPhe1o64ecATsSMqHlkM//4iVkqL4tJJmO4zipvJCcCenbqM/vgMMIdXWHY7g2RZup9rjtXnCEpFjJkF2TCRmGYRiGYRiGcV7sY8AwDMMwDMMwFpRzy4SWt7Fy+eisSXWNBFMZFy/wNHJZZPoddvl30ymmNloDTBUfHPNUT62Ouv/9/R9T3acPscJ/qFw8MllM00QOOxTIKednT5B18Be+9g5tt7qOqfsw4f3vP4fzUNZnp47f/i6yE/7993+Ec3zGri/PnkDm9IPvc/a5jU1ICFJKGrBZxX3+8OOPqa55zJIi4zwkLyk7NOGWuOr7OcTU4FjVjWLsJ+VyU5tG+Hs0xe8ilUmwM8V2e8/2qO6kBteQKGH5UhAgbvsnYtp23KTtclVMcxaq7GTkejh2rFVClJ1YOXw488k10Rekrm9T3epyeVbOqAzgoZBRjiOVAVr0G66YIm6ccRvutpqz8kBlCJ6KOz7R+xcuKtOYpQwr6zjnwjocNI4OWe42ETG4e9ikukYLfVs84WPLPisRkseJ0jKNROZ4P1FOG1NIXCqshnReu4p47XX4dw920c++/ZvOXODGkLe4qj9p9zDOnrV5nNoVWe8/5UfrpNJ4LrF4Lp6SBUrZgeezzCbwEKtjhyVyIyFtSlTf5vmIj0DEfuIqGbI4lS+t8/5dkdn19imP8WkX98H3sF1vymP1j59gu06d5SlV4RBTWmIZSKeH4x3dYmnds13IhL7pzAe3PkJG8YFyzvPF2LemMvFG4j1PZ1b/0hduzMo7m5D29aZN2q6wg8zZ+zV2E/qL25Bk7yunnrHoP5IG95vXv/b1WXn1CpyM1vL8nOO07EPZDXJ/b3dWHo65/+uewDnp8Cm2a9a4EZ48fjArh1s8Bk8b6McOz1h6dvE1uFk60f/9GGwzA4ZhGIZhGIaxoNjHgGEYhmEYhmEsKPYxYBiGYRiGYRgLyrnXDGREisevq2x7x4fQcEXry1T3aA8651xP6bnOoM/bc6D9f2NjlbYLhdbwy2+whefj+7CBKqrsm+EQesilHGuqJ30c+7LMVjliPWR1C/tsn6oMyjXouU4abO342pvXZuWMyPxZKHCWujjAPblz6yHVdTs49je++Lb6He5JWmXF/cKXWc88b/xTZBxOPKlZVXpZIZj3HZVdVmhpxx7/LvARc8U0P/cgwfFODqEn3Dvh+Hu4h7bl+axXXBZWaa72lBT5N1PiPAb1XdpqOkI7CFy2PEtXoNOc+Bxj0mbzhecxp4sGblxEP1FW2tGc0P6nVJbnvGjzgcqS6omYSaVhW5fOcCbU/hDHm8asaZ1EiMnhmO1DfWGvOIk5dmU25EDEwfBEZbAVGu5NZZ9XkHZ9MWuxE5Gt0wuEza7/cl2vtsjrNKC77UdsKbh/hr8HXdYDPz3ivno+wD0cRBx/wvnzhf/hG4ulIrUm2xP6IhO6K9YZOaov85OxKHOM5UNflLkP2c7hxFI+x5/8XewIXfaAtdEpYek97bG1YxDgd5eyfE8Kok8fCKvlfsIx5on93z/kNQPOAeIom+X4TnlY29hu8311Ujje7znzweEeLNLbPR6nGiKu0ml+RhmR9frC1g7V3Xgd1tkXN/G+028e0nbdLPqB04Jac1Qoz8rZPB+714M+/6zF72iNAtZkuh5aTe3Wfdru5Az72J3wc94X/eZymfX+Z3/119jHANs9esqZrNuij/vOb/wG1S2n0H9P1RA/Ehb8vlqv6Huf///5bWbAMAzDMAzDMBYU+xgwDMMwDMMwjAXl3DKhZIQpiUmKp7o3tiBLGfZ5KuZMZBm8kmcZz7e+/guzcr8F+YLX42nC0SmmZlY8llu8toWpnjt3P6W6/gRTnZWwTHWpGFOdmyIL6M7mOm23dhWypNO9H1Hd0RGmj+KYbc3u3vpgVn78EOdV3blG27UOcL+eKdvRlVWc199+8AHVDYXqaf0aS6eKq3yfjc8mcaQNIuOJb2ZP2d7lREZZX1lK5rKoC5T84fkTSMIGA8gd3Dxb846mOJvjIzV1uoS2UC2VqW4wQLtri1hPh9zk/a6Qh4z5HMvCFrBQ5fNK5zD1m7gswYuSf3wZ1z8H9hroA/dVxuf1EtpqqKRAHdF3pln947hy2y7iII65L5D2ra6K0CRB36MtJx0xXTxW0pJKFZKficiCedpkiY0rZU/KnnTSR9+cUtm5Q9FXd1uIx0TF4FjINmI1F57LI87GEbevRk/YRbb4vBKXt50HIpG5OVJSK1fITZOI/48vEu0/4/E4lffx/MoiC3W5wM8y4yGGUxFLsvLCwns65WfbbCOWfJ9lXn0PNqGDoXiWyse4KCS+tWOWIU0jtMObV1le7Is+97iB2G/U+f2iFOB6tjY587dsM7fusIV3KKRUuTxbZg6m3NbmgWwWUtFE9TPHx7inNWWL7Hloi/t7R1T3TNiz7+xgjJnoLOUig/TTJyxjDPKIj6985QbV3RGbDn/E5/XRHVh6Ok+ez4pt9Q7bHEASNQm4bZ2I8fPhyT2q88QYL/vQiXoXSIQt6KNHT6luZQU2rUUlMW+eQV5UKLCMV2a9Py82M2AYhmEYhmEYC4p9DBiGYRiGYRjGgmIfA4ZhGIZhGIaxoJx7zYBwqHOe7bEF5vYaUjknKiX9cAyN4nGKdWDreezU7YnU5BHrP3eEtvXZQZP3kcH+6ypf/UCsNcim+FIvFmCBmhGOYduXL9N2+SJ0iIcHrDXsC1322hJbWuWXoSEu5aHnGrYatN3+AezJ6m3WYvqfQNMW5/m+3vjizVl5JCy/HMdxUlo3bPyjkST8HLJiXUB1ZVltDB3so3tsV3Z2DDHj5etYRyLXqDiO46QrWMNy+y5VOfVTrCE4OmaNeTol1jmI8wgCjo10DvrFVu851Y1Fyvmo16S6QgXtIltirW4QLjnziCt02p5aFzCIUDeKWW/dFt6Ok67Si4p9kkOry/tPh0IDn7DuW8rAfYf11pHoS4cT1mxv3kB/2RRd7nOV9j4jNOFOmq1Fp0KbP5hw/5UKcK1tsdZgoGwYp+J6tFY4EWsZUmodQCrAfR5FbPvo5z+/ZvafO5HQGgfqOedSuPfVPMdfOYu+IOWydWY6kGXcw8GQY+W035yVs8qas+FBiz3iodtJsmItjcuxk4hjTMW6moyKsVwKzz2V4diPxfvFTpUX5NQaA1GH7ZbU/ocjYQGt7p0fYJ9vXL9Cda4r15lxbPaGfJ7zQCj6IF+NI9tb0PtPxToAx3GcZgua+yjmuBqJGDg+wRrMScz931j0A4Mea/p/8d0vzsrf+bVvU13w19jP333C7637or/KLSMmztTap5oI90StaRqITjsK+f/WU2nsJyPuXTbkvikdindHtZ5AOvxmM/y78RjrUoYj7v/GU22B/tnYzIBhGIZhGIZhLCj2MWAYhmEYhmEYC8q59STSnizy2DarMcG0TXmZbS3zk/KsXGuwZd3RFL/Lyuk5NY3iTfHNojN43riA6Skts3kiMiN7Kvvm9iqkDasrmC6vbrOF4ljssttiW7NSHlOIS1me3tlcxT7funF5Vr5//yltlxbfY67H01OdDg6+ss6Wp+srOM/TwwOqOz1UtoRzgJTnaKmOzICr6869f2nX+EKG45cfO0zhmZVyPFV8/OTJrHyyy1OnlRJiR7qVJTHH2OYa2lM281WqGw0RH7u7LPHpNCH1iMfYZ+Tw9PVU2ID22k2qa5xi2va0xNKfTAHxnV/mNrN55S1nHnnrKq5zI+a+bDjBNG3i8ZRtLCxbJypLr3CVcyYR+tjBmPUWvuj3XB3jsm+bcl0+RHwGLh87FJmppTVgU0kZL67C0m7UV5l9RSbmKOb+tyfUQIMBrm2srs0VkpecmgrPCInlSGlQEnHsMMX9rxvOn73t5hKe7UqGn3NFOAu6Sg7WFVmpJ2N+tmPR+eyPMG40hix7zeYRA6HPdUspyEC2llmqsyqku6MhP7+6CKW4AJlGrCRf0ta0sMTxIYZ4589/zDKQ8QTXVs3ifo3TZd5HD+2ndvcp1W1VcWNLRbZ2fCKyFUcJx74z5n58HuAxkuOvWoVEdjBgKdrREWTMEyUjTyKRGbqLDmM8VjIX0ZyVQsnxsxh362fcP6UjxMtE2W0+7KIthMJCdqienbzujMquvFytok6N/8UiYieXxXXqfWRFnbaolRLNjOobfdF2JxM1Xqhx5jzYzIBhGIZhGIZhLCj2MWAYhmEYhmEYC4p9DBiGYRiGYRjGgnLuNQOeAw1Socq6pvJyUW7Iv9uCFrCodJ01oT/dXsI+Ts9Y8+gKcWGUZl19qwHd10qRz2u9hGP322yXt1SGnePGBnTZhTJrowdTaKynKk06aSBzfG3ry9CFvXlF7N9lLdxQ2IC6e6dUt1yFLduoz5rE2hm2DZZYy+iVOTX1InPuNQSvkBi/ahex0Hm3Dw+prnMCrWSlorWAeO4TsTAlnvJzzpRwYuurvG5kIvThYZq1uq069L/9ThPnpGzZGm20rcGYYzgQa1h8tf96E79r9qZUt3fEuuR54a0bsBb0N/l5Jj6eZ+IpW8Ep+rPhkO/xSNxzsXzDiRwOulQaetTJmNdsjXvQbOcyrEcNAuhMGx3WwlZ3rs7K3/v4Do4dcyd+/Rrsbn/l579GdaGHPlDH7lTofqeiH41ipe8XZc/jY8fCYnCo1gzI9WOhsvUL1RqXeeBqDnHU6dSprjlEW233qMppCUvPqtJNl4V34VYZMXwty/ab5QLa/2jAz6EXIeZaY+4LOoc4z7wau/eGiOmTOvTi6RTHcOJin9Ued9QtYdXrq9eZfB4xcSrW3x2fsLVtW7Sn7QzHUVNYhD4743t+WkNfOhqwVr1SLjvzRiwsgOOY+zipWZcWpD/5W8Rmm8eGOEIfIW2vtcVwStT5Hj/n+w9g250KOcbk+qRYD/IpvNN6Pp778jJbhOfFuqVCnttFXrSLdIbPS163vCdBwOco1wKkQo59T1yr7hslrlrn6Hu2ZsAwDMMwDMMwjHNiHwOGYRiGYRiGsaCcWyaUETZ03RFPs00GmL6M1fREpozp9Epxh+rGLUzdJeJU0jme4k1F+GbxKzxN83QXUoxynqdYrmxCVtHuNqnOS+M8UzlcWzrLEhs5ZV5X86/3Hj2dlQsuywZGA0whBlPcr6WAp782hMVkc32F6uodTKlV11giMp1ganMS8LR7Ppk/W7P/v7zcWrQr5DK94xOqSwk73qUKx3R3jJjoCSu2bJenm5NseVYe9Fke8uDJLurGLK0rCSvArZ2Ls3KhwHIfPxTyFofbbjYHmdrqGtuHNhqQ3bWa3B8cHrLcbV6IpqLNDbgv8EPc70TZH4tk0E5J3f9AZFcdCrmClAU5juOEItP1uM/tO7uBZxNNOQ7GCfqbnLJ9DEpCXiis9W5sc1/z+pUNlK9zHAwHePa+ryQ+QjYUChs8PaXd7yldi0Rm+Bwq6YCwVA087gOH3vxlIL4rxrqsz0P3Sg736fIKj0W5CsaVUGWv7k3wd19YeB83mrRdX/QvvQE/vwctYd845Gd5qYT95zP8/NpDIdMQEoiLyxxHxSz2f1rn/vGSkINJmZPjOE6hiP0/3Ud8LC3xdoMh2tNygSUczQ7Of7lUorp2vTkrb6zwe8nyJr/rzANy7BsOuQ/qdNAP1GpsbS6bey7H72gyq/ZYvNNEEcvNZMb3WMkYT6UF9imPPc1Wc1ZOK4mclAOVyyhns1pqKeU+HB8pYS0epNyX1wUvl/vI7XwlIXqVfln2oy/KKz9/BmybGTAMwzAMwzCMBcU+BgzDMAzDMAxjQTm3TGhnBVONh7f3qK5Wg4uKnPZxHMfJiCxs5ZuvU93a1S380cWq74zL03GtQ2RXdR2V6fcypuNqz1mmUSrg2Doh20BkYp2KKZZMip15usKxZb/GjkT3nu/PyiuZNap7p40pr4yYIhq2eZrz+WPcy6Mhf5u1RCa8lsru+eX18qzsKpejgZgaM84HZXVVM2yJmKrTEoeJcJSKlOtQpog4nvg8/eeFiM3JEFOiTTUNnhIOIr0OT50eHCP+XDUFur6NtrV+Bc5Z2yqTtS+urdFkp4eWkEDdu3eb64RkqdvmjJMdJRuaFx4/Rabv1tMHVBeKDKrTmANhWUiDSiXuXwrLiINAZrBUUqNBB/KLbpOlQEGCfiOKWKYRCyeWsXLhKIpMrNUlxOrmUpm280WfXjvVEgDUhUraJA7tdBuICc/V0+k4r6lyEZFWXpmUGq6ETGg84t/VOpBpVpz54OoW5FqreZWpWWQq7Q65n3AnaMeHZxwft2oYV5rCdWiqJFlvriPG8iq7c9UXcq08j8/XKzjPdJoH4d1j0U+k8bu4xzGWSuEJxioDdk+4xbQClsGNhMNSr4k+qqecurY2IBHpK7e1sxOcy6qS2YVTHPvC9mWqO65znzgPSGee0Yglq/JvLVkpL0HKFYYct4MB4k86CE2nKou7kL1oCVG3i9/du3eP6qQ06MKFC1RXEO+H+TyebS7PUnEp49HXJruyIPBV3U+X8by4D2yn5T2ekN0HKvWy76NOv3e/0h7xJdjMgGEYhmEYhmEsKPYxYBiGYRiGYRgLin0MGIZhGIZhGMaCcu41A/vPns3K+YB1r1ursC48bXCWvrqwmRoM2I6q2YNG2Y2glXqi9P3DDPRQg9Mm1VWWcS7hgO291j1oWCsFPud4GbrBvotvosBn3Wv9EDrhXWUdWRc6uVqPszIOpzjndaE1LCuLyV7vU7F/1hnGIqNdPmC7q47Qd1dTbCV3VekXjc/GlTJSZR8qM8NqJV4i4tZVtrQpoesdRRwf0URorUOZXZa1f70WnnOpxJkR08Kz8v2PblHd0QFsCE9PsY/rV6/TdoMe9Oef3PqQ6vb30ealXtRxHGcsborncoOdjFjTOS8EgViD5HI/0RDrdFJp7muaLdyfkdK7rl3DmqdBjP7kez/8MW13dgB99VqV130sl3G8aMJri/rCAjVd5L4nL5yMS0X0nVHMevHeQPRzZ6ypDjxxPep3nmhH3Ra03uUlXhOW8mUsUZXTbeO6XVeteRD2uZMpx2dHad7ngUoB7f3h7gHVHYtlJE2lt15y8Mz0WoOiaLvTCXZSqfIz2i6gn/Md1ovnY9z7RL1SPDrEmFnMcbs4rSM2q0toT52IddOdU4yL7SmvvdrKor/c2+c1faHI8p4KEd859V+gkVhj8eyA11T0BmLNSprfX9YuYl3WsxMeuw9P+D1oHpBad23TKdHa9lwO7z9DtdZgOp3+1LIeb+SIHPgc3/J4eaX3r1ars3JGZWcXr31OSmQj1hmUZYZgvWbwH9ve01f7CKTtqLpuafX6YnZiWzNgGIZhGIZhGMY5sY8BwzAMwzAMw1hQzi0Tqgt5zjTL3xChmMT5xpe/wr+LxDTvEk/xPb5/B/ucYIooVjIXafs0HbKM4sM6rDkLZT6vag5Tg8V1lhC1Qkzr7QkZxf4h26buP34yK5+dsfXiVEzTNGOe1gqKmFrKlnBeX/uVb9J2f3Eb070/PGL7xjjCVM+V169S3RtffXNW3r7G5nn5Kk+VzQM68+//U6T1l5rCHgs7NPcF+1BMS4YeT1EOxRxlJLJ7BoGaIhdSukhlWb2yAZ3H6dN9qqvtwY73bhNT1vt379B2A5GRtN1niclAXGuiJBpp8WdGyWL84vxlf3Ucx6muQGaTtMpUN3HFPXA5DuIJYnfrNc7gmxeZSx/8+P6s/OEHH9J2pwd4Nm+/oawR12HZXFhhKVmjDYlITlmG5kRm1+kE8ojIZynT9hVImS5cuUh1/RZia9RjS9lBH/vMCevVIK2ybMaI60TZPnaFzGkyZulPvy8sm0ccu0mWpZPzwL2Hd2flZov7gpMh4i9OswXmlsicu1bgMbIo2uppB/fXS7Gco9WAzKvd5ecQeHieaxx+jkya3le2sX0hJ0x30ddksxwfZTF0KwWH0xsJS1KljFjKYT+rFfxwMOYYOzhBGynnWIqxLKSfly9sUF2rj3671eLYryzN3xj8KotNKWHRMpvJVFqGcgzI9i6HeG2VSftP8fgij6flS1JC5GrljPjbF1LFV8lxdJ28D1pCJJGSIb2d3Kev3iFcsf84ecHz/Keex0/O+aWn8lJsZsAwDMMwDMMwFhT7GDAMwzAMwzCMBcU+BgzDMAzDMAxjQTn3mgFvChFSrKwDH9yFljFkqaFz7S1hZRiwVipehzXXyd4hjtVie69hEb8L19jyLD+BPnLQVKnEQ5xzIWGtmjvGiR41sH7g/Q/ep+2aB9DEhh7rxXI+dOBeis+rUIHOdu0iRI8bl67Qdl/40s1Z+Q/e+5DqRkIPGSa8JiG/hGNHFdbHHqv1C/OA1AJq27FXafWk3k9bfck62sML/qE//TeqyomUxWYkdPaJSlWezuMgIwftKUqUVjKFIwwGLaoLhKb/59/lVOvtTnlWngqt7mTK+2/30A4Kak1CL8b/FfQnyi5U6LwdVTWNPr+l2r8EVlexZiAfb1FdTtgH97XNsOgvCxvcTyTi+foutrv5GvcTuRC2ieUqr3/auYz1RMf1JtU9OsSak03VR634aFONDuKg2ePnV6ujfwzeYE1udQXrVjo+t40gkFaE0PX6yj90MoZlYzpU6wl87GM8ZmvHlBhPXKWRTTJlZ97o9RAfWxXWpLtt1Pk+D8JXxXq5aMgWmPtHGDPDDJ6RtggfjRATup9LibVtoYqB9SWxlsHh/sUt4Boi8X5RLrDmfEXYhydKsz2M0e5Cl+PWFX11Ijr14ZS3ywjL3WDKnVmYwu/K1RWq89NYp7K6ymtpptP5s1f2RLt1Xa2dR51cW+A4jpNJ0GfEMceAXDMgewWteZdjfBDw/uW6gFetZfDU+5v8k9YqqWNLrX6kxk9X9kH+y99DPDqPl58j+Zir4wUpfl2Xv9NrrfR5ngebGTAMwzAMwzCMBcU+BgzDMAzDMAxjQTm3TKicxpTeUP1q6EDW062x/WZjF/KfpYtVqru5dmlWftuFPWbt+Ji2GwvrsrTKYrhcXpuV6+rbZr+JqfVqmo+9U4Cs4vkZ7D0f7z+n7SYN2IetrvM+DkRdrcHSpvtPTmflmzcxjR+ssLzgrZ+BFesv/ypnlXz/9r1ZuZBX0+dDTJlPd5tUFcssf9925oJKBfHR6/G9ltOSeoqyJTKfdrs8RU6I0HlRdvTyTH/pNORaZxH/Ttreae1R4AnLs1BmkGUpRBAI27SQpzl9kREzm+L9rwvb0UhMzXoqw/FUyISafT72SNyUQcTTkLU2pshPG3xfTxrzl33TcRxnJLL7ZnIsl4mFvCtXZGtHTzybvQOWK559gjbfP8M93tx+Rx0b/ehRneVi/+s9SBv/55//FdVly2g3//nf/BafV4jzavdR7g7YBvf3//BPZuX79x5T3W//+rdm5VzAMRKKjJ890V/lVTZ4X0iDeoM+1Q2FnFNb6+UzGJOyKvu3k1Uel3OA56Mv8JSc6uoa+pMzNRYdnmIc1Pd3MMY9LeWwj2KO72cxg2eWDZXUQ8hlsxmO/SVpM6xkFM0OpDQiCbBzOuHnXK8jroaqfzzt4HqWXmiTKFcy6MtaY5XlVbzPeA73sdlESJaO+b72RWbucpmle5O5lAlJG01dKyUrjJRruS/IbKVMiIRCvA+ZLliNpVIuk1ISIs9/+f93y2NHom/R5+8LSZTugyIpiVU35WXSIFfrkF8hQ5YSKH1tcj9aAh1pG9JzYDMDhmEYhmEYhrGg2MeAYRiGYRiGYSwo9jFgGIZhGIZhGAvKudcMOANo4JT7kbO5sz0r51zW7UVChyzXDziO40yq0HVWhP4zt7XKB0hBo7iUUmmXhZZ8q7pEdZknONHaUZPqmsKa8+oV2HuGStc4HUAn3PNYB/j4BOsCXKXZ+uST+7NypYRj/WyB7cmqW1g38Vv//jep7t1v/6tZea/zlOqc9fKs2G1yKvTUaP70iq+yanuVtajUE2ZzrGcNxfqCOIKWuy+e+U/2L/V+TKEAW9d8qUx1vW5zVk5e0DtDixqkEPuBp3SB4trCgC33whBx5buv0BqKfcQea259B9e6nOb9T2PcE09Zo17ZxvqZVp81xM+P2eJ3Xuj0oE/OTNg+tFDA/fjw9iOq+9M/+d6s/KO7z6iu3cP9D4S+NZPmfnQwwHMbDfgZjoUef6w01T/7c+hLf/h9tk3+6KMfzcq3b386Kx8c8rqv7hDX+sE9XlN1/8nJrPy73/0Vqrt2HX1bRkj4pwm3r3QorAGnfF+XV3D+E2VZ64uxwM3yOod7j7C24evvOnNBJYv71Ko1qS4Q41Ymz/1coyXut+rA1orlWTmdRuXyCmvgV5dhSzsa8nM4EmsUTgZc96yD9UQ5j/uop6eoGwlr0SDk15JqFn3iOOK+piaWQIyVZaiUmbsT/K7W196R6OcStY+cOHanwX1zvYP7Ohk/5F3Oob2yHEv1mPuqMZjXDPzD7ssr1wwIPb6v7EOlBj+J+bnHQqyfiPN/9bWov+lc1JoBl7xLcVy1LkCuJ0ipMd730RZ0TEUR3on0moE40isfPhubGTAMwzAMwzCMBcU+BgzDMAzDMAxjQTm3TCiTwrT1ZMhTuXIqplRmqc6lAqYX+70m1bV2a7Py0wDloMhTJaubkAJNefbc6YmZmc2ALeu+cg2Wnkclnvp+fgj7w8dPUV7f2aDtyiu4nnf/9VeprroNm9AP3/sB1clMe/c/hTSgcnWftlvbQebCfIkv7vWtyzivNk/bjn1MbfohTwtndbbYOSAlsu/J6THHYXmFq4zBiiLL5XjMto4pYc+XiOcVqanoobifkZqqy5UQm5vedaq7f+/jWbmn2owv5ECZFKYTQxXDifxc91kKEaSxre8quzwhgZKSoWmo7ENTkPQkI7Yd9EXW7jji8w/E9GU5z+flbKi/54R8rjwr1/b4Xv339/5yVv6zv/kh1Z0c4h5PE35OnsgCPBGWit0u2xhKmZye7o6m6AQTh/tOKVe8e5elDK02+kSaZnaVjXEobCZDtuz8mw+ezMr3n/4+1X3j3ddn5X/7qz83K2+ucV8WCNvHfIH3PxbSrLSSj3iBsAOcclxfubTpzBu1M1jKNjp8vXkhkyrGHGOXhKQvpTIEL5WEBXGC+3t0xlK/Whv2pP0e96Mf72H81FKuvLBevrzK41R/gD4lkrKGiPcfixTnkxHXDUW272HMbVLKQFxhy1xv8XbSlnk44P0PsmiffZWhvTPE/rsdtlcOlcX1POC5wg5b22h6L/9/ZTkm++75ZEI6WzAdT/WhsegP41jLY14u45G79FzZh75cYuOrDNivyn4s1UBSJuypsVrKf30lE5LvG/ra5N/6vcT9B/w/v80MGIZhGIZhGMaCYh8DhmEYhmEYhrGg2MeAYRiGYRiGYSwo514z4OWg/VuvsPVnLHSIK8us+cwvQXMfZ1lvJbWBLaG5Oz08ps2GY1hnptdKVDcoipT3Duso0wm0hptLrFe8HOFcPn2+OyvXj45ou2IWGq7yMq+HWP/WO6jb4PTt2TFSld+8+sasnFup0Han8cGs3HFOqK59gn2sKNvUvNDxFkpbVNefsNXoXJBAr+l7yv51KrWnrOsMRArvJOG1BmNhwRqGeM5ZZVM4GkGrq9WEQRbPpZzlGFuqQWd7evCY6nyhTXVjaWumrMUCoSn3eD3BWFiXBcq2LxL+v7HQSnpp3kdK6ByTNJ+/tGzTnmqJsAL0xlyXcXh9wbzw/kfQ3//xH/0Pqru3h3bc7Krrl92Scq2TNnNynZFynyPNbJJwjLvCVtJVXXpHWDvLdTE/ObZ8vi8pO47jxKLdqPOfiBN9fMzrsp78tz+dle89fjAr/6ff+x3a7vVLa/hDXdtIWEKm1FqGeIy6bIHbbDrD/fE8ECeIq8oyX9/2Fu5hWq07KhTRhwz6HJuffIqx76COMbjRHdF2lTL2UcjxsV1hzZlWuumsiFu9rikS9ryxsPSME47hYYB99IbK9lmsNUim/DvZngZyXJjwugBHnrNqI4l4R5ko+0ZHaLY9be3sz+P/s75cfy81666KgVf9Jfs1+p3qAKfTf5glaaI7UjoVMfZJm9FX9L3yfcJx2Mo0ecHeE7FE9qG+eu0WPxsNud0lYhyPXtj/y9cTOE7kfF7mMWINwzAMwzAMwzgH9jFgGIZhGIZhGAuKm7xyHsUwDMMwDMMwjHnFZgYMwzAMwzAMY0GxjwHDMAzDMAzDWFDsY8AwDMMwDMMwFhT7GDAMwzAMwzCMBcU+BgzDMAzDMAxjQbGPAcMwDMMwDMNYUOxjwDAMwzAMwzAWFPsYMAzDMAzDMIwFxT4GDMMwDMMwDGNB+T8tLJZmSQZ8FAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsdElEQVR4nO3deZhO9f/H8dc9Y/ZNM8yMyTZ2smQpDRW+9mylUhEqUdmXIimGQhT5RkmyFUWbvtpGQkr2YWxNKskSQzFmbM1YPr8//ObkNjPMzT1nzHg+ruu+Lvc5n3PO+9xzmnn1Puc+x2GMMQIAAAAAAABs5JHXBQAAAAAAAOD6Q1MKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtaEoBAAAAAADAdjSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCsjCli1b9Oijjyo6Olq+vr4KDAxUrVq1NH78eB05csQa17BhQzVs2DDvCs2Gw+GwXp6enrrhhhtUo0YNPfHEE1qzZk2m8X/88YccDodmz57t0nbef/99TZo0yaVlstpWbGysHA6H/v77b5fWdSk//fSTYmNj9ccff2Sa98gjj6h06dJu25YrHA6HYmNjr3o9GZ9jTl5ZfQauuJrPa/bs2W6p4UqtXbtW99xzj0qWLCkfHx9FREQoJiZGgwYNuqL1ffXVV275+QHA9YA8lTPkKdflxzwlSfv371dsbKwSEhIyzcv4+eWVxYsXq1mzZoqKipKPj4+ioqLUsGFDvfzyy1e0vis5rnF9chhjTF4XAVxLpk+frp49e6pixYrq2bOnqlSpotOnT2vDhg2aPn26atSooYULF0qSFaC+++67vCs4Cw6HQ/fdd58GDRokY4xSU1O1bds2vfvuu9qyZYv69u2r//73v9b4tLQ0bdq0SWXLllXRokVzvJ3WrVtr27ZtLv2RzmpbsbGxGjlypP766y8VKVIkx+u6lI8//lj333+/li9fnino7ty5U6mpqapZs6ZbtuWKNWvWqHjx4ipevPhVrSfjc7xQz549lZKSonnz5jlNr1mzpnx8fK54W1fzef3111/auXPnVddwJb788ku1bdtWDRs2VPfu3VWsWDEdOHBAGzZs0Pz587Vv3z6X19m7d2+98cYb4k8nAFwaeYo8lZvyY56SpA0bNuiWW27RrFmz9MgjjzjN27dvn/bt26fbbrvtqrZxJd566y099dRTuvfee9WxY0eFhoZq7969WrVqldavX68NGza4vM4rOa5xfSqU1wUA15LVq1frqaeeUtOmTfXZZ585/eFp2rSpBg0apLi4uDysMOciIiKc/qg1b95c/fv3V48ePfT666+rUqVKeuqppyRJPj4+uf4H8OzZszpz5owt27qcsmXL5tm23bXvWX2OwcHBSk9Pv+w2Tp06JT8/vxxv62o+r6JFi7oUzN1p/Pjxio6O1uLFi1Wo0L9/7h588EGNHz8+T2oCgOsBeSr3kKfOuxbylLu5o8l2pcaOHas777xTH3/8sdP0zp0769y5c3lSE64ffH0PuMCYMWPkcDj09ttvZ3kmxNvbW23btr3kOkaOHKm6desqNDRUwcHBqlWrlmbMmJHpyoply5apYcOGCgsLk5+fn0qWLKl7771XJ0+etMZMnTpVNWrUUGBgoIKCglSpUiU999xzV7x/np6emjJliooUKaJXXnnFmp7VJeB//fWXevTooRIlSsjHx0dFixZV/fr19e2330o6f1bzyy+/1O7du50ubb5wfePHj9dLL72k6Oho+fj4aPny5Ze8tH3v3r1q3769goODFRISoocfflh//fWX05jsLtcuXbq0dcZp9uzZuv/++yVJjRo1smrL2GZWl5v/888/Gjp0qKKjo+Xt7a0bb7xRvXr10tGjRzNtp3Xr1oqLi1OtWrXk5+enSpUqaebMmZf59LOuP+PrbcuXL9dTTz2lIkWKKCwsTO3bt9f+/ftztM5Lyaj3008/Vc2aNeXr66uRI0dKkt544w3deeedCg8PV0BAgKpVq6bx48fr9OnTTuvI6vNyOBzq3bu33nvvPVWuXFn+/v6qUaOGvvjiC6dxWX19r2HDhqpatarWr1+vO+64Q/7+/ipTpoxefvnlTMFn+/btatasmfz9/VW0aFH16tVLX375pRwOx2XPqB8+fFhFihRxakhl8PDI/OdvwYIFiomJUUBAgAIDA9W8eXOns6ePPPKI3njjDWv/3Xk5PwAUJOSp2dY08lTByFOpqal6+umnnfarf//+OnHihNO4jz76SHXr1lVISIiVbx577DFJ568EvOWWWyRJjz76qPV5ZuxHVl/fc+VzWrlypWJiYuTr66sbb7xRL7zwgt55550cZZXDhw+rWLFiWc67ODMZY/Tmm2/q5ptvlp+fn2644Qbdd999+v33360xlzqugYtxpRTw/86ePatly5apdu3aKlGixBWv548//tATTzyhkiVLSjp/eXGfPn30559/avjw4daYVq1a6Y477tDMmTNVuHBh/fnnn4qLi1N6err8/f01f/589ezZU3369NGrr74qDw8P/fbbb/rpp5+uaj/9/PzUpEkT6+tL2Z2R6dy5szZu3KjRo0erQoUKOnr0qDZu3KjDhw9Lkt5880316NFDO3futC6/v9jrr7+uChUq6NVXX1VwcLDKly9/ydruuecedejQQU8++aS2b9+uF154QT/99JPWrl0rLy+vHO9jq1atNGbMGD333HN64403VKtWLUnZn9Ezxujuu+/W0qVLNXToUN1xxx3asmWLRowYodWrV2v16tVOoXrz5s0aNGiQnn32WUVEROidd95Rt27dVK5cOd155505rvNCjz/+uFq1aqX3339fe/fu1TPPPKOHH35Yy5Ytu6L1XWjjxo1KTEzU888/r+joaAUEBEg6f9l9x44drYC1efNmjR49Wj///HOOQuGXX36p9evXa9SoUQoMDNT48eN1zz33aMeOHSpTpswll01KSlKnTp00aNAgjRgxQgsXLtTQoUMVFRWlLl26SJIOHDigBg0aKCAgQFOnTlV4eLg++OAD9e7dO0f7HRMTo3feeUd9+/ZVp06dVKtWrWyPozFjxuj555/Xo48+queff17p6el65ZVXdMcdd2jdunWqUqWKXnjhBZ04cUIff/yxVq9ebS2bXYgDgOsRecoZeSr/56mTJ0+qQYMG2rdvn5577jlVr15d27dv1/Dhw7V161Z9++23cjgcWr16tR544AE98MADio2Nla+vr3bv3m1tu1atWpo1a5aVNVq1aiVJl706Kief05YtW9S0aVNVqFBBc+bMkb+/v9566y3NnTs3R/sYExOjTz75RLGxsbrnnntUtWpVeXp6Zjn2iSee0OzZs9W3b1+NGzdOR44c0ahRo1SvXj1t3rxZEREROTquAYsBYIwxJikpyUgyDz74YI6XadCggWnQoEG288+ePWtOnz5tRo0aZcLCwsy5c+eMMcZ8/PHHRpJJSEjIdtnevXubwoUL57iWC0kyvXr1ynb+kCFDjCSzdu1aY4wxu3btMpLMrFmzrDGBgYGmf//+l9xOq1atTKlSpTJNz1hf2bJlTXp6epbzLtzWiBEjjCQzYMAAp7Hz5s0zkszcuXOd9m3EiBGZtlmqVCnTtWtX6/1HH31kJJnly5dnGtu1a1enuuPi4owkM378eKdxCxYsMJLM22+/7bQdX19fs3v3bmvaqVOnTGhoqHniiScybetiF9c/a9YsI8n07NnTadz48eONJHPgwIHLrjNDgwYNzE033eQ0rVSpUsbT09Ps2LHjkstmHKvvvvuu8fT0NEeOHLHmXfx5ZexHRESESU1NtaYlJSUZDw8PM3bs2Ez7t2vXLqc6Lzz+MlSpUsU0b97cev/MM88Yh8Nhtm/f7jSuefPm2f5sL/T333+b22+/3UgykoyXl5epV6+eGTt2rDl27Jg1bs+ePaZQoUKmT58+TssfO3bMREZGmg4dOljTevXqZfjTCQDZI0+Rpwpanho7dqzx8PAw69evdxqXcfx99dVXxhhjXn31VSPJHD16NNt1r1+/PtPPLUPGz+9COf2c7r//fhMQEGD++usva9rZs2dNlSpVMuWwrPz222+matWqVmby8/MzjRs3NlOmTHE69lavXm0kmQkTJjgtv3fvXuPn52cGDx5sTcvuuAYuxtf3ADdbtmyZmjRpopCQEHl6esrLy0vDhw/X4cOHdejQIUnSzTffLG9vb/Xo0UNz5sxxutw1w6233qqjR4/qoYce0v/+9z+3PknF5OAmzbfeeqtmz56tl156SWvWrMn0la6caNu2rUtn5Dp16uT0vkOHDipUqJCWL1/u8rZdkXEG6+IbTt5///0KCAjQ0qVLnabffPPN1plbSfL19VWFChW0e/fuK67h4q8xVK9eXZKuap0XrqtChQqZpm/atElt27ZVWFiYdax26dJFZ8+e1S+//HLZ9TZq1EhBQUHW+4iICIWHh+eo5sjISN16662Z6rxw2RUrVqhq1aqqUqWK07iHHnrosuuXpLCwMP3www9av369Xn75ZbVr106//PKLhg4dqmrVqln/TS1evFhnzpxRly5ddObMGevl6+urBg0aXHM33gWA6wF56l/kqZzLjTz1xRdfqGrVqrr55pudckLz5s2dbieQ8dW8Dh066MMPP9Sff/55xdu8UE4+pxUrVug///mP0w3uPTw81KFDhxxto2zZstq8ebNWrFihkSNHqkmTJlq/fr169+6tmJgY/fPPP5LOfxYOh0MPP/yw02cRGRmpGjVqkJlwRWhKAf+vSJEi8vf3165du654HevWrVOzZs0knX/qzI8//qj169dr2LBhks7fYFo6/4v/22+/VXh4uHr16qWyZcuqbNmyTk9w6dy5s2bOnKndu3fr3nvvVXh4uOrWraslS5ZcxV6el/FHLCoqKtsxCxYsUNeuXfXOO+8oJiZGoaGh6tKli5KSknK8HVe/1hQZGen0vlChQgoLC7Mucc8thw8fVqFChTLdkNvhcCgyMjLT9sPCwjKtw8fHx/r5XomL15lxefvVrDNDVj+HPXv26I477tCff/6p//73v1bzJuOeSTnZ7tV8DjlZ9vDhw4qIiMg0Lqtpl1KnTh0NGTJEH330kfbv368BAwbojz/+sG52fvDgQUnnw6SXl5fTa8GCBW79HxgAKOjIU87IU/k/Tx08eFBbtmzJlBGCgoJkjLFywp133qnPPvvMOtFVvHhxVa1aVR988MEVb1uyLzN5eHjozjvv1PDhw7Vo0SLt379fDzzwgOLj463bOhw8eFDGGEVERGT6PNasWUNmwhXhnlLA//P09FTjxo319ddfX/LeAJcyf/58eXl56YsvvpCvr681/bPPPss09o477tAdd9yhs2fPasOGDZo8ebL69++viIgIPfjgg5LO3wTx0Ucf1YkTJ/T9999rxIgRat26tX755ReVKlXqivbz1KlT+vbbb1W2bNlL7mORIkU0adIkTZo0SXv27NGiRYv07LPP6tChQzl+Yo6rNzRMSkrSjTfeaL0/c+aMDh8+7PTH2MfHR2lpaZmWvZqgFRYWpjNnzuivv/5yClLGGCUlJVlnvvKrrH4On332mU6cOKFPP/3U6VhKSEiwsbJLCwsLsxpGF3IlyF/My8tLI0aM0GuvvaZt27ZJknVW8eOPP77i/64AAOeRp5yRp/J/nipSpIj8/Pyyvd/mhVcntWvXTu3atVNaWprWrFmjsWPHqmPHjipdurRiYmJyrcbcyEwBAQEaOnSoFixY4JSZHA6HfvjhhywfYpDVNOByuFIKuMDQoUNljFH37t2Vnp6eaf7p06f1+eefZ7u8w+FQoUKFnG4MeOrUKb333nvZLuPp6am6detaV6hs3Lgx05iAgAC1bNlSw4YNU3p6urZv3+7KblnOnj2r3r176/DhwxoyZEiOlytZsqR69+6tpk2bOtV3tWezLjZv3jyn9x9++KHOnDmjhg0bWtNKly6tLVu2OI1btmyZjh8/7jTNlTNjjRs3lqRMN4P85JNPdOLECWt+QZIRcC8MD8YYTZ8+Pa9KyqRBgwbatm1bppvRzp8/P0fLHzhwIMvpiYmJkv49s928eXMVKlRIO3fuVJ06dbJ8ZXDnFWwAUFCRp7JGnsqfeap169bauXOnwsLCsswIFz+BUDr/uTVo0EDjxo2TJOtpvrmVIxo0aKBly5Y5Xal07tw5ffTRRzlaPqeZqXXr1jLG6M8//8zys6hWrZq1rLuPaxRcXCkFXCAmJkZTp05Vz549Vbt2bT311FO66aabdPr0aW3atElvv/22qlatqjZt2mS5fKtWrTRx4kR17NhRPXr00OHDh/Xqq69mOmvw1ltvadmyZWrVqpVKliypf/75xzr70qRJE0lS9+7d5efnp/r166tYsWJKSkrS2LFjFRISkqMzTQcPHtSaNWtkjNGxY8e0bds2vfvuu9q8ebMGDBig7t27Z7tsSkqKGjVqpI4dO6pSpUoKCgrS+vXrFRcXp/bt21vjqlWrpk8//VRTp05V7dq15eHh4fQ/8K769NNPVahQITVt2tR6WkyNGjWcvg/fuXNnvfDCCxo+fLgaNGign376SVOmTFFISIjTuqpWrSpJevvttxUUFCRfX19FR0dneQl006ZN1bx5cw0ZMkSpqamqX7++9bSYmjVrqnPnzle8T9eqpk2bytvbWw899JAGDx6sf/75R1OnTlVycnJel2bp37+/Zs6cqZYtW2rUqFGKiIjQ+++/r59//llS5kcUX6x58+YqXry42rRpo0qVKuncuXNKSEjQhAkTFBgYqH79+kk6H8xHjRqlYcOG6ffff1eLFi10ww036ODBg1q3bp0CAgI0cuRISbLC1rhx49SyZUt5enqqevXq8vb2zsVPAgDyF/LUeeSpgpGn+vfvr08++UR33nmnBgwYoOrVq+vcuXPas2ePvvnmGw0aNEh169bV8OHDtW/fPjVu3FjFixfX0aNH9d///ldeXl5q0KCBpPNfOfXz89O8efNUuXJlBQYGKioq6pJfAc2JYcOG6fPPP1fjxo01bNgw+fn56a233tKJEyckXT4z3XTTTWrcuLFatmypsmXL6p9//tHatWs1YcIERUREqFu3bpKk+vXrq0ePHnr00Ue1YcMG3XnnnQoICNCBAwe0cuVKVatWTU899ZQk9x/XKMDy5v7qwLUtISHBdO3a1ZQsWdJ4e3ubgIAAU7NmTTN8+HBz6NAha1xWT4uZOXOmqVixovHx8TFlypQxY8eONTNmzHB68sXq1avNPffcY0qVKmV8fHxMWFiYadCggVm0aJG1njlz5phGjRqZiIgI4+3tbaKiokyHDh3Mli1bLlu//v/JGZKMh4eHCQ4ONtWqVTM9evQwq1evzjT+4ie4/PPPP+bJJ5801atXN8HBwcbPz89UrFjRjBgxwpw4ccJa7siRI+a+++4zhQsXNg6Hw3piSMb6Xnnllctuy5h/nzYSHx9v2rRpYwIDA01QUJB56KGHzMGDB52WT0tLM4MHDzYlSpQwfn5+pkGDBiYhISHT02KMMWbSpEkmOjraeHp6Om0zq6fJnTp1ygwZMsSUKlXKeHl5mWLFipmnnnrKJCcnO40rVaqUadWqVab9utyTgzIom6fFXPxEl+XLl+foCXMX15DV0/eyqtcYYz7//HNTo0YN4+vra2688UbzzDPPmK+//jrTdrN7+l5WTyS6+OeQ3dP3Lq4zu+1s27bNNGnSxPj6+prQ0FDTrVs3M2fOHCPJbN68OesP4v8tWLDAdOzY0ZQvX94EBgYaLy8vU7JkSdO5c2fz008/ZRr/2WefmUaNGpng4GDj4+NjSpUqZe677z7z7bffWmPS0tLM448/booWLWod85d7og0AXK/IU+SpgpKnjh8/bp5//nlTsWJF4+3tbUJCQky1atXMgAEDTFJSkjHGmC+++MK0bNnS3Hjjjcbb29uEh4ebu+66y/zwww9O6/rggw9MpUqVjJeXl9N+ZPf0vZx+Tj/88IOpW7eu8fHxMZGRkeaZZ54x48aNu+wTAY0xZtq0aaZ9+/amTJkyxt/f33h7e5uyZcuaJ5980uzduzfT+JkzZ5q6deuagIAA4+fnZ8qWLWu6dOliNmzYYI3J7rgGLuYwJgePjQAA4BrRo0cPffDBBzp8+DBXKAEAAGSjWbNm+uOPP3L0VGUgr/D1PQDANWvUqFGKiopSmTJldPz4cX3xxRd655139Pzzz9OQAgAA+H8DBw5UzZo1VaJECR05ckTz5s3TkiVLNGPGjLwuDbgkmlIAgGuWl5eXXnnlFe3bt09nzpxR+fLlNXHiROt+UAAAADh/A/7hw4crKSlJDodDVapU0XvvvaeHH344r0sDLomv7wEAAAAAAMB2l74NPwAAAAAAAJALaEoBAAAAAADAdjSlAAAAAAAAYDtudJ5D586d0/79+xUUFCSHw5HX5QAAAJsYY3Ts2DFFRUXJw4Pzea4gPwEAcH3KaX6iKZVD+/fvV4kSJfK6DAAAkEf27t2r4sWL53UZ+Qr5CQCA69vl8hNNqRwKCgqSdP4DDQ4OzuNqAACAXVJTU1WiRAkrCyDnyE8AAFyfcpqfaErlUMYl58HBwYQqAACuQ3z9zHXkJwAArm+Xy0/cGAEAAAAAAAC2oykFAAAAAAAA29GUAgAAAAAAgO1oSgEAAAAAAMB2NKUAAAAAAABgO5pSAAAAAAAAsB1NKQAAAAAAANiOphQAAAAAAABsR1MKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtaEoBAAAAAADAdnnalIqNjZXD4XB6RUZGWvONMYqNjVVUVJT8/PzUsGFDbd++3WkdaWlp6tOnj4oUKaKAgAC1bdtW+/btcxqTnJyszp07KyQkRCEhIercubOOHj1qxy4CAAC43ffff682bdooKipKDodDn332mdN8MhQAAMgP8vxKqZtuukkHDhywXlu3brXmjR8/XhMnTtSUKVO0fv16RUZGqmnTpjp27Jg1pn///lq4cKHmz5+vlStX6vjx42rdurXOnj1rjenYsaMSEhIUFxenuLg4JSQkqHPnzrbuJwAAgLucOHFCNWrU0JQpU7KcT4YCAAD5gslDI0aMMDVq1Mhy3rlz50xkZKR5+eWXrWn//POPCQkJMW+99ZYxxpijR48aLy8vM3/+fGvMn3/+aTw8PExcXJwxxpiffvrJSDJr1qyxxqxevdpIMj///HOOa01JSTGSTEpKiiu7CAAA8rlrPQNIMgsXLrTeX0sZ6lr/7AAAQO7IaQbI8yulfv31V0VFRSk6OloPPvigfv/9d0nSrl27lJSUpGbNmlljfXx81KBBA61atUqSFB8fr9OnTzuNiYqKUtWqVa0xq1evVkhIiOrWrWuNue222xQSEmKNAQAAKCjIUAAAIL8olJcbr1u3rt59911VqFBBBw8e1EsvvaR69epp+/btSkpKkiRFREQ4LRMREaHdu3dLkpKSkuTt7a0bbrgh05iM5ZOSkhQeHp5p2+Hh4daYrKSlpSktLc16n5qaemU7CQAAYKO8zFDkJwAA4Io8bUq1bNnS+ne1atUUExOjsmXLas6cObrtttskSQ6Hw2kZY0ymaRe7eExW4y+3nrFjx2rkyJE52g93eHnT37ZtyxXP1iySo3H5uf78XLuUv+vPz7VL+bv+a7V2KX/Xz7GTd3L62V9P8iJD2Z2fJOm/yf+1dXs51e+Gfpcdk59rl/J3/fm5dil/15+fa5eoP7dw7OSdnNafW/L863sXCggIULVq1fTrr79aT+G7+EzcoUOHrDN/kZGRSk9PV3Jy8iXHHDx4MNO2/vrrr0xnEC80dOhQpaSkWK+9e/de1b4BAADYIS8zFPkJAAC44ppqSqWlpSkxMVHFihVTdHS0IiMjtWTJEmt+enq6VqxYoXr16kmSateuLS8vL6cxBw4c0LZt26wxMTExSklJ0bp166wxa9euVUpKijUmKz4+PgoODnZ6AQAAXOvyMkORnwAAgCvy9Ot7Tz/9tNq0aaOSJUvq0KFDeumll5SamqquXbvK4XCof//+GjNmjMqXL6/y5ctrzJgx8vf3V8eOHSVJISEh6tatmwYNGqSwsDCFhobq6aefVrVq1dSkSRNJUuXKldWiRQt1795d06ZNkyT16NFDrVu3VsWKFfNs3wEAAK7U8ePH9dtvv1nvd+3apYSEBIWGhqpkyZJkKAAAkC/kaVNq3759euihh/T333+raNGiuu2227RmzRqVKlVKkjR48GCdOnVKPXv2VHJysurWratvvvlGQUFB1jpee+01FSpUSB06dNCpU6fUuHFjzZ49W56entaYefPmqW/fvtYTZtq2baspU6bYu7MAAABusmHDBjVq1Mh6P3DgQElS165dNXv2bDIUAADIF/K0KTV//vxLznc4HIqNjVVsbGy2Y3x9fTV58mRNnjw52zGhoaGaO3fulZYJAABwTWnYsKGMMdnOJ0MBAID84Jq6pxQAAAAAAACuDzSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAAAAAAwHY0pQAAAAAAAGA7mlIAAAAAAACwHU0pAAAAAAAA2I6mFAAAAAAAAGxHUwoAAAAAAAC2oykFAAAAAAAA29GUAgAAAAAAgO1oSgEAAAAAAMB2NKUAAAAAAABgO5pSAAAAAAAAsB1NKQAAAAAAANiOphQAAAAAAABsR1MKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtaEoBAAAAAADAdjSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAAAAAAwHY0pQAAAAAAAGA7mlIAAAAAAACwHU0pAAAAAAAA2I6mFAAAAAAAAGxHUwoAAAAAAAC2oykFAAAAAAAA29GUAgAAAAAAgO1oSgEAAAAAAMB2NKUAAAAAAABgO5pSAAAAAAAAsB1NKQAAAAAAANiOphQAAAAAAABsR1MKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtaEoBAAAAAADAdjSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAAAAAAwHY0pQAAAAAAAGA7mlIAAAAAAACwHU0pAAAAAAAA2I6mFAAAAAAAAGxHUwoAAAAAAAC2oykFAAAAAAAA29GUAgAAAAAAgO1oSgEAAAAAAMB2NKUAAAAAAABgO5pSAAAAAAAAsN0105QaO3asHA6H+vfvb00zxig2NlZRUVHy8/NTw4YNtX37dqfl0tLS1KdPHxUpUkQBAQFq27at9u3b5zQmOTlZnTt3VkhIiEJCQtS5c2cdPXrUhr0CAACw35kzZ/T8888rOjpafn5+KlOmjEaNGqVz585ZY9yVswAAAK7UNdGUWr9+vd5++21Vr17dafr48eM1ceJETZkyRevXr1dkZKSaNm2qY8eOWWP69++vhQsXav78+Vq5cqWOHz+u1q1b6+zZs9aYjh07KiEhQXFxcYqLi1NCQoI6d+5s2/4BAADYady4cXrrrbc0ZcoUJSYmavz48XrllVc0efJka4y7chYAAMCVyvOm1PHjx9WpUydNnz5dN9xwgzXdGKNJkyZp2LBhat++vapWrao5c+bo5MmTev/99yVJKSkpmjFjhiZMmKAmTZqoZs2amjt3rrZu3apvv/1WkpSYmKi4uDi98847iomJUUxMjKZPn64vvvhCO3bsyJN9BgAAyE2rV69Wu3bt1KpVK5UuXVr33XefmjVrpg0bNkhyX84CAAC4GnnelOrVq5datWqlJk2aOE3ftWuXkpKS1KxZM2uaj4+PGjRooFWrVkmS4uPjdfr0aacxUVFRqlq1qjVm9erVCgkJUd26da0xt912m0JCQqwxWUlLS1NqaqrTCwAAID+4/fbbtXTpUv3yyy+SpM2bN2vlypW66667JLkvZ12M/AQAAFxRKC83Pn/+fG3cuFHr16/PNC8pKUmSFBER4TQ9IiJCu3fvtsZ4e3s7XWGVMSZj+aSkJIWHh2daf3h4uDUmK2PHjtXIkSNd2yEAAIBrwJAhQ5SSkqJKlSrJ09NTZ8+e1ejRo/XQQw9Jcl/Ouhj5CQAAuCLPrpTau3ev+vXrp7lz58rX1zfbcQ6Hw+m9MSbTtItdPCar8Zdbz9ChQ5WSkmK99u7de8ltAgAAXCsWLFiguXPn6v3339fGjRs1Z84cvfrqq5ozZ47TOHfkrAuRnwAAgCvy7Eqp+Ph4HTp0SLVr17amnT17Vt9//72mTJli3e8pKSlJxYoVs8YcOnTIOqsXGRmp9PR0JScnO53FO3TokOrVq2eNOXjwYKbt//XXX5nODl7Ix8dHPj4+V7eTAAAAeeCZZ57Rs88+qwcffFCSVK1aNe3evVtjx45V165dFRkZKenqc9bFyE8AAMAVeXalVOPGjbV161YlJCRYrzp16qhTp05KSEhQmTJlFBkZqSVLlljLpKena8WKFVYQql27try8vJzGHDhwQNu2bbPGxMTEKCUlRevWrbPGrF27VikpKdkGKgAAgPzs5MmT8vBwjnmenp46d+6cJCk6OtotOQsAAOBq5NmVUkFBQapatarTtICAAIWFhVnT+/fvrzFjxqh8+fIqX768xowZI39/f3Xs2FGSFBISom7dumnQoEEKCwtTaGionn76aVWrVs26cXrlypXVokULde/eXdOmTZMk9ejRQ61bt1bFihVt3GMAAAB7tGnTRqNHj1bJkiV10003adOmTZo4caIee+wxSee/tueOnAUAAHA18vRG55czePBgnTp1Sj179lRycrLq1q2rb775RkFBQdaY1157TYUKFVKHDh106tQpNW7cWLNnz5anp6c1Zt68eerbt6/19Ji2bdtqypQptu8PAACAHSZPnqwXXnhBPXv21KFDhxQVFaUnnnhCw4cPt8a4K2cBAABcqWuqKfXdd985vXc4HIqNjVVsbGy2y/j6+mry5MmaPHlytmNCQ0M1d+5cN1UJAABwbQsKCtKkSZM0adKkbMe4K2cBAABcqTy7pxQAAAAAAACuXzSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAAAAAAwHY0pQAAAAAAAGA7mlIAAAAAAACwHU0pAAAAAAAA2I6mFAAAAAAAAGxHUwoAAAAAAAC2oykFAAAAAAAA29GUAgAAAAAAgO1oSgEAAAAAAMB2NKUAAAAAAABgO5pSAAAAAAAAsB1NKQAAAAAAANiOphQAAAAAAABsR1MKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtaEoBAAAAAADAdjSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7VxuSu3du1f79u2z3q9bt079+/fX22+/7dbCAAAAChIyFAAAgDOXm1IdO3bU8uXLJUlJSUlq2rSp1q1bp+eee06jRo1ye4EAAAAFARkKAADAmctNqW3btunWW2+VJH344YeqWrWqVq1apffff1+zZ892d30AAAAFAhkKAADAmctNqdOnT8vHx0eS9O2336pt27aSpEqVKunAgQPurQ4AAKCAIEMBAAA4c7kpddNNN+mtt97SDz/8oCVLlqhFixaSpP379yssLMztBQIAABQEZCgAAABnLjelxo0bp2nTpqlhw4Z66KGHVKNGDUnSokWLrEvSAQAA4IwMBQAA4KyQqws0bNhQf//9t1JTU3XDDTdY03v06CF/f3+3FgcAAFBQkKEAAACcuXyllCQZYxQfH69p06bp2LFjkiRvb28CFQAAwCWQoQAAAP7l8pVSu3fvVosWLbRnzx6lpaWpadOmCgoK0vjx4/XPP//orbfeyo06AQAA8jUyFAAAgDOXr5Tq16+f6tSpo+TkZPn5+VnT77nnHi1dutStxQEAABQUZCgAAABnLl8ptXLlSv3444/y9vZ2ml6qVCn9+eefbisMAACgICFDAQAAOHP5Sqlz587p7Nmzmabv27dPQUFBbikKAACgoCFDAQAAOHO5KdW0aVNNmjTJeu9wOHT8+HGNGDFCd911lztrAwAAKDDIUAAAAM5c/vrea6+9pkaNGqlKlSr6559/1LFjR/36668qUqSIPvjgg9yoEQAAIN8jQwEAADhzuSkVFRWlhIQEffDBB9q4caPOnTunbt26qVOnTk437QQAAMC/yFAAAADOXG5KSZKfn58ee+wxPfbYY+6uBwAAoMAiQwEAAPwrR02pRYsW5XiFbdu2veJiAAAAChIyFAAAQPZy1JS6++67c7Qyh8OR5VNlAAAArkdkKAAAgOzlqCl17ty53K4DAACgwCFDAQAAZM8jrwsAAAAAAADA9eeKmlJLly5V69atVbZsWZUrV06tW7fWt99+6+7aAAAAChQyFAAAwL9cbkpNmTJFLVq0UFBQkPr166e+ffsqODhYd911l6ZMmZIbNQIAAOR7ZCgAAABnObqn1IXGjh2r1157Tb1797am9e3bV/Xr19fo0aOdpgMAAOA8MhQAAIAzl6+USk1NVYsWLTJNb9asmVJTU91SFAAAQEFDhgIAAHDmclOqbdu2WrhwYabp//vf/9SmTRu3FAUAAFDQkKEAAACcufz1vcqVK2v06NH67rvvFBMTI0las2aNfvzxRw0aNEivv/66NbZv377uqxQAACAfI0MBAAA4c7kpNWPGDN1www366aef9NNPP1nTCxcurBkzZljvHQ4HgQoAAOD/kaEAAACcudyU2rVrV27UAQAAUKCRoQAAAJy5fE8pAAAAAAAA4Gq5fKWUMUYff/yxli9frkOHDuncuXNO8z/99FO3FQcAAFBQkKEAAACcudyU6tevn95++201atRIERERcjgcuVEXAABAgUKGAgAAcOZyU2ru3Ln69NNPddddd+VGPQAAAAUSGQoAAMCZy/eUCgkJUZkyZXKjFgAAgAKLDAUAAODM5aZUbGysRo4cqVOnTuVGPQAAAAUSGQoAAMCZy02p+++/X8nJyQoPD1e1atVUq1Ytp5crpk6dqurVqys4OFjBwcGKiYnR119/bc03xig2NlZRUVHy8/NTw4YNtX37dqd1pKWlqU+fPipSpIgCAgLUtm1b7du3z2lMcnKyOnfurJCQEIWEhKhz5846evSoq7sOAABwxdyZoXLizz//1MMPP6ywsDD5+/vr5ptvVnx8vDXfXTkLAADgSrl8T6lHHnlE8fHxevjhh6/6Jp3FixfXyy+/rHLlykmS5syZo3bt2mnTpk266aabNH78eE2cOFGzZ89WhQoV9NJLL6lp06basWOHgoKCJEn9+/fX559/rvnz5yssLEyDBg1S69atFR8fL09PT0lSx44dtW/fPsXFxUmSevTooc6dO+vzzz+/4toBAABc4c4MdTnJycmqX7++GjVqpK+//lrh4eHauXOnChcubI1xV84CAAC4Ui43pb788kstXrxYt99++1VvvE2bNk7vR48eralTp2rNmjWqUqWKJk2apGHDhql9+/aSzjetIiIi9P777+uJJ55QSkqKZsyYoffee09NmjSRdP4moiVKlNC3336r5s2bKzExUXFxcVqzZo3q1q0rSZo+fbpiYmK0Y8cOVaxY8ar3AwAA4HLcmaEuZ9y4cSpRooRmzZplTStdurT1b2OMW3IWAADA1XD563slSpRQcHCw2ws5e/as5s+frxMnTigmJka7du1SUlKSmjVrZo3x8fFRgwYNtGrVKklSfHy8Tp8+7TQmKipKVatWtcasXr1aISEhVkNKkm677TaFhIRYYwAAAHJbbmWorCxatEh16tTR/fffr/DwcNWsWVPTp0+35rsrZwEAAFwNl5tSEyZM0ODBg/XHH3+4pYCtW7cqMDBQPj4+evLJJ7Vw4UJVqVJFSUlJkqSIiAin8REREda8pKQkeXt764YbbrjkmPDw8EzbDQ8Pt8ZkJS0tTampqU4vAACAK+XuDHUpv//+u6ZOnary5ctr8eLFevLJJ9W3b1+9++67kuS2nHUx8hMAAHCFy1/fe/jhh3Xy5EmVLVtW/v7+8vLycpp/5MgRl9ZXsWJFJSQk6OjRo/rkk0/UtWtXrVixwpp/8f0WjDGXvQfDxWOyGn+59YwdO1YjR47M6W4AAABckrsz1KWcO3dOderU0ZgxYyRJNWvW1Pbt2zV16lR16dLFGueOnHUh8hMAAHCFy02pSZMmubUAb29v60bnderU0fr16/Xf//5XQ4YMkXT+LF2xYsWs8YcOHbLO6kVGRio9PV3JyclOZ/EOHTqkevXqWWMOHjyYabt//fVXprODFxo6dKgGDhxovU9NTVWJEiWuYk8BAMD1zN0Z6lKKFSumKlWqOE2rXLmyPvnkE0nn85F09TnrYuQnAADgCpebUl27ds2NOizGGKWlpSk6OlqRkZFasmSJatasKUlKT0/XihUrNG7cOElS7dq15eXlpSVLlqhDhw6SpAMHDmjbtm0aP368JCkmJkYpKSlat26dbr31VknS2rVrlZKSkm2gks7fV8HHxyc3dxUAAFxHcjtDXah+/frasWOH07RffvlFpUqVkiS35ayLkZ8AAIArXG5KXejUqVM6ffq00zRXbuD53HPPqWXLlipRooSOHTum+fPn67vvvlNcXJwcDof69++vMWPGqHz58ipfvrzGjBkjf39/dezYUZIUEhKibt26adCgQQoLC1NoaKiefvppVatWzXpKTOXKldWiRQt1795d06ZNkyT16NFDrVu35sl7AAAgT1xthrqcAQMGqF69ehozZow6dOigdevW6e2339bbb78tSW7LWQAAAFfD5abUiRMnNGTIEH344Yc6fPhwpvlnz57N8boOHjyozp0768CBAwoJCVH16tUVFxenpk2bSpIGDx6sU6dOqWfPnkpOTlbdunX1zTffKCgoyFrHa6+9pkKFCqlDhw46deqUGjdurNmzZ8vT09MaM2/ePPXt29d6ekzbtm01ZcoUV3cdAADgirkzQ13OLbfcooULF2ro0KEaNWqUoqOjNWnSJHXq1Mka466cBQAAcKVcbkoNHjxYy5cv15tvvqkuXbrojTfe0J9//qlp06bp5ZdfdmldM2bMuOR8h8Oh2NhYxcbGZjvG19dXkydP1uTJk7MdExoaqrlz57pUGwAAgDu5M0PlROvWrdW6dets57srZwEAAFwpl5tSn3/+ud599101bNhQjz32mO644w6VK1dOpUqV0rx585zOwAEAAOA8MhQAAIAzD1cXOHLkiKKjoyWdv/dBxuOLb7/9dn3//ffurQ4AAKCAIEMBAAA4c7kpVaZMGf3xxx+SpCpVqujDDz+UdP7sX+HChd1ZGwAAQIFBhgIAAHDmclPq0Ucf1ebNmyVJQ4cO1ZtvvikfHx8NGDBAzzzzjNsLBAAAKAjIUAAAAM5cvqfUgAEDrH83atRIiYmJio+PV9myZVWjRg23FgcAAFBQkKEAAACcudyUulipUqVUqlQpd9QCAABw3SBDAQCA612Ov763du1aff31107T3n33XUVHRys8PFw9evRQWlqa2wsEAADIz8hQAAAAWctxUyo2NlZbtmyx3m/dulXdunVTkyZN9Oyzz+rzzz/X2LFjc6VIAACA/IoMBQAAkLUcN6USEhLUuHFj6/38+fNVt25dTZ8+XQMHDtTrr79uPUUGAAAA55GhAAAAspbjplRycrIiIiKs9ytWrFCLFi2s97fccov27t3r3uoAAADyOTIUAABA1nLclIqIiNCuXbskSenp6dq4caNiYmKs+ceOHZOXl5f7KwQAAMjHyFAAAABZy3FTqkWLFnr22Wf1ww8/aOjQofL399cdd9xhzd+yZYvKli2bK0UCAADkV2QoAACArBXK6cCXXnpJ7du3V4MGDRQYGKg5c+bI29vbmj9z5kw1a9YsV4oEAADIr8hQAAAAWctxU6po0aL64YcflJKSosDAQHl6ejrN/+ijjxQYGOj2AgEAAPIzMhQAAEDWctyUyhASEpLl9NDQ0KsuBgAAoKAiQwEAADjL8T2lAAAAAAAAAHehKQUAAAAAAADb0ZQCAAAAAACA7XLUlKpVq5aSk5MlSaNGjdLJkydztSgAAICCgAwFAACQvRw1pRITE3XixAlJ0siRI3X8+PFcLQoAAKAgIEMBAABkL0dP37v55pv16KOP6vbbb5cxRq+++mq2jy4ePny4WwsEAADIr8hQAAAA2ctRU2r27NkaMWKEvvjiCzkcDn399dcqVCjzog6Hg0AFAADw/8hQAAAA2ctRU6pixYqaP3++JMnDw0NLly5VeHh4rhYGAACQ35GhAAAAspejptSFzp07lxt1AAAAFGhkKAAAAGcuN6UkaefOnZo0aZISExPlcDhUuXJl9evXT2XLlnV3fQAAAAUGGQoAAOBfOXr63oUWL16sKlWqaN26dapevbqqVq2qtWvX6qabbtKSJUtyo0YAAIB8jwwFAADgzOUrpZ599lkNGDBAL7/8cqbpQ4YMUdOmTd1WHAAAQEFBhgIAAHDm8pVSiYmJ6tatW6bpjz32mH766Se3FAUAAFDQkKEAAACcudyUKlq0qBISEjJNT0hI4GkyAAAA2SBDAQAAOHP563vdu3dXjx499Pvvv6tevXpyOBxauXKlxo0bp0GDBuVGjQAAAPkeGQoAAMCZy02pF154QUFBQZowYYKGDh0qSYqKilJsbKz69u3r9gIBAAAKAjIUAACAM5ebUg6HQwMGDNCAAQN07NgxSVJQUJDbCwMAAChIyFAAAADOXG5KXYggBQAA4DoyFAAAwBXc6BwAAAAAAAC4WjSlAAAAAAAAYDuaUgAAAAAAALCdS02p06dPq1GjRvrll19yqx4AAIAChwwFAACQmUtNKS8vL23btk0OhyO36gEAAChwyFAAAACZufz1vS5dumjGjBm5UQsAAECBRYYCAABwVsjVBdLT0/XOO+9oyZIlqlOnjgICApzmT5w40W3FAQAAFBRkKAAAAGcuN6W2bdumWrVqSVKm+yJwSToAAEDWyFAAAADOXG5KLV++PDfqAAAAKNDIUAAAAM5cvqdUht9++02LFy/WqVOnJEnGGLcVBQAAUFCRoQAAAM5zuSl1+PBhNW7cWBUqVNBdd92lAwcOSJIef/xxDRo0yO0FAgAAFARkKAAAAGcuN6UGDBggLy8v7dmzR/7+/tb0Bx54QHFxcW4tDgAAoKAgQwEAADhz+Z5S33zzjRYvXqzixYs7TS9fvrx2797ttsIAAAAKEjIUAACAM5evlDpx4oTT2b0Mf//9t3x8fNxSFAAAQEFDhgIAAHDmclPqzjvv1Lvvvmu9dzgcOnfunF555RU1atTIrcUBAAAUFGQoAAAAZy5/fe+VV15Rw4YNtWHDBqWnp2vw4MHavn27jhw5oh9//DE3agQAAMj3yFAAAADOXL5SqkqVKtqyZYtuvfVWNW3aVCdOnFD79u21adMmlS1bNjdqBAAAyPfIUAAAAM5cvlJKkiIjIzVy5Eh31wIAAFCgkaEAAAD+dUVNqeTkZM2YMUOJiYlyOByqXLmyHn30UYWGhrq7PgAAgAKDDAUAAPAvl7++t2LFCkVHR+v1119XcnKyjhw5otdff13R0dFasWJFbtQIAACQ75GhAAAAnLl8pVSvXr3UoUMHTZ06VZ6enpKks2fPqmfPnurVq5e2bdvm9iIBAADyOzIUAACAM5evlNq5c6cGDRpkhSlJ8vT01MCBA7Vz5063FgcAAFBQkKEAAACcudyUqlWrlhITEzNNT0xM1M033+yOmgAAAAocMhQAAICzHH19b8uWLda/+/btq379+um3337TbbfdJklas2aN3njjDb388su5UyUAAEA+RIYCAADIXo6aUjfffLMcDoeMMda0wYMHZxrXsWNHPfDAA+6rDgAAIB8jQwEAAGQvR02pXbt25XYdAAAABQ4ZCgAAIHs5akqVKlUqt+sAAAAocMhQAAAA2ctRU+pif/75p3788UcdOnRI586dc5rXt29ftxQGAABQ0JChAAAA/uVyU2rWrFl68skn5e3trbCwMDkcDmuew+EgUAEAAGSBDAUAAODM5abU8OHDNXz4cA0dOlQeHh65URMAAECBQ4YCAABw5nIiOnnypB588EHCFAAAgAvIUAAAAM5cTkXdunXTRx99lBu1AAAAFFhkKAAAAGcuf31v7Nixat26teLi4lStWjV5eXk5zZ84caLbigMAACgoyFAAAADOXL5SasyYMVq8eLEOHjyorVu3atOmTdYrISHBpXWNHTtWt9xyi4KCghQeHq67775bO3bscBpjjFFsbKyioqLk5+enhg0bavv27U5j0tLS1KdPHxUpUkQBAQFq27at9u3b5zQmOTlZnTt3VkhIiEJCQtS5c2cdPXrU1d0HAAC4Iu7MUK4aO3asHA6H+vfvb01zV8YCAAC4Ui43pSZOnKiZM2cqMTFR3333nZYvX269li1b5tK6VqxYoV69emnNmjVasmSJzpw5o2bNmunEiRPWmPHjx2vixImaMmWK1q9fr8jISDVt2lTHjh2zxvTv318LFy7U/PnztXLlSh0/flytW7fW2bNnrTEdO3ZUQkKC4uLiFBcXp4SEBHXu3NnV3QcAALgi7sxQrli/fr3efvttVa9e3Wm6uzIWAADAlXK5KeXj46P69eu7ZeNxcXF65JFHdNNNN6lGjRqaNWuW9uzZo/j4eEnnz+BNmjRJw4YNU/v27VW1alXNmTNHJ0+e1Pvvvy9JSklJ0YwZMzRhwgQ1adJENWvW1Ny5c7V161Z9++23kqTExETFxcXpnXfeUUxMjGJiYjR9+nR98cUXma7MAgAAyA3uzFA5dfz4cXXq1EnTp0/XDTfcYE13V8YCAAC4Gi43pfr166fJkyfnRi1KSUmRJIWGhkqSdu3apaSkJDVr1swa4+PjowYNGmjVqlWSpPj4eJ0+fdppTFRUlKpWrWqNWb16tUJCQlS3bl1rzG233aaQkBBrDAAAQG7KzQyVnV69eqlVq1Zq0qSJ03R3ZSwAAICr4fKNztetW6dly5bpiy++0E033ZTpJp2ffvrpFRVijNHAgQN1++23q2rVqpKkpKQkSVJERITT2IiICO3evdsa4+3t7XT2L2NMxvJJSUkKDw/PtM3w8HBrzMXS0tKUlpZmvU9NTb2i/QIAAJByL0NlZ/78+dq4caPWr1+faZ67MtbFyE8AAMAVLjelChcurPbt27u9kN69e2vLli1auXJlpnkOh8PpvTEm07SLXTwmq/GXWs/YsWM1cuTInJQOAABwWbmVobKyd+9e9evXT9988418fX2zHeeOjHUh8hMAAHCFy02pWbNmub2IPn36aNGiRfr+++9VvHhxa3pkZKSk82fqihUrZk0/dOiQdWYvMjJS6enpSk5OdjqTd+jQIdWrV88ac/DgwUzb/euvvzKdIcwwdOhQDRw40HqfmpqqEiVKXMVeAgCA61luZKjsxMfH69ChQ6pdu7Y17ezZs/r+++81ZcoU656aV5uxLkZ+AgAArnD5nlLuZIxR79699emnn2rZsmWKjo52mh8dHa3IyEgtWbLEmpaenq4VK1ZYYah27dry8vJyGnPgwAFt27bNGhMTE6OUlBStW7fOGrN27VqlpKRkG6p8fHwUHBzs9AIAAMgPGjdurK1btyohIcF61alTR506dVJCQoLKlCnjlox1MfITAABwhctXSkVHR1/ysu7ff/89x+vq1auX3n//ff3vf/9TUFCQdX+CkJAQ+fn5yeFwqH///hozZozKly+v8uXLa8yYMfL391fHjh2tsd26ddOgQYMUFham0NBQPf3006pWrZp1U8/KlSurRYsW6t69u6ZNmyZJ6tGjh1q3bq2KFSu6+hEAAAC4zJ0Z6nKCgoKse3RmCAgIUFhYmDXdHRkLAADgarjclOrfv7/T+9OnT2vTpk2Ki4vTM88849K6pk6dKklq2LCh0/RZs2bpkUcekSQNHjxYp06dUs+ePZWcnKy6devqm2++UVBQkDX+tddeU6FChdShQwedOnVKjRs31uzZs+Xp6WmNmTdvnvr27Ws9QaZt27aaMmWKS/UCAABcKXdmKHdwV8YCAAC4Ui43pfr165fl9DfeeEMbNmxwaV3GmMuOcTgcio2NVWxsbLZjfH19NXny5Es+Zjk0NFRz5851qT4AAAB3cWeGuhLfffed03t3ZSwAAIAr5bZ7SrVs2VKffPKJu1YHAABwXSBDAQCA65XbmlIff/yxQkND3bU6AACA6wIZCgAAXK9c/vpezZo1nW7SaYxRUlKS/vrrL7355ptuLQ4AAKCgIEMBAAA4c7kpdffddzu99/DwUNGiRdWwYUNVqlTJXXUBAAAUKGQoAAAAZy43pUaMGJEbdQAAABRoZCgAAABnbrunFAAAAAAAAJBTOb5SysPDw+k+CFlxOBw6c+bMVRcFAABQUJChAAAAspbjptTChQuznbdq1SpNnjxZxhi3FAUAAFBQkKEAAACyluOmVLt27TJN+/nnnzV06FB9/vnn6tSpk1588UW3FgcAAJDfkaEAAACydkX3lNq/f7+6d++u6tWr68yZM0pISNCcOXNUsmRJd9cHAABQYJChAAAA/uVSUyolJUVDhgxRuXLltH37di1dulSff/65qlatmlv1AQAA5HtkKAAAgMxy/PW98ePHa9y4cYqMjNQHH3yQ5aXoAAAAcEaGAgAAyFqOm1LPPvus/Pz8VK5cOc2ZM0dz5szJctynn37qtuIAAADyOzIUAABA1nLclOrSpctlH2cMAAAAZ2QoAACArOW4KTV79uxcLAMAAKBgIkMBAABk7YqevgcAAAAAAABcDZpSAAAAAAAAsB1NKQAAAAAAANiOphQAAAAAAABsR1MKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtaEoBAAAAAADAdjSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAAAAAAwHY0pQAAAAAAAGA7mlIAAAAAAACwHU0pAAAAAAAA2I6mFAAAAAAAAGxHUwoAAAAAAAC2oykFAAAAAAAA29GUAgAAAAAAgO1oSgEAAAAAAMB2NKUAAAAAAABgO5pSAAAAAAAAsB1NKQAAAAAAANiOphQAAAAAAABsR1MKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtaEoBAAAAAADAdjSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAAAAAAwHY0pQAAAAAAAGA7mlIAAAAAAACwHU0pAAAAAAAA2I6mFAAAAAAAAGxHUwoAAAAAAAC2oykFAAAAAAAA29GUAgAAAAAAgO1oSgEAAAAAAMB2NKUAAAAAAABgO5pSAAAAAAAAsB1NKQAAAAAAANiOphQAAAAAAABsl6dNqe+//15t2rRRVFSUHA6HPvvsM6f5xhjFxsYqKipKfn5+atiwobZv3+40Ji0tTX369FGRIkUUEBCgtm3bat++fU5jkpOT1blzZ4WEhCgkJESdO3fW0aNHc3nvAAAA8sbYsWN1yy23KCgoSOHh4br77ru1Y8cOpzHuylkAAABXKk+bUidOnFCNGjU0ZcqULOePHz9eEydO1JQpU7R+/XpFRkaqadOmOnbsmDWmf//+WrhwoebPn6+VK1fq+PHjat26tc6ePWuN6dixoxISEhQXF6e4uDglJCSoc+fOub5/AAAAeWHFihXq1auX1qxZoyVLlujMmTNq1qyZTpw4YY1xV84CAAC4UoXycuMtW7ZUy5Yts5xnjNGkSZM0bNgwtW/fXpI0Z84cRURE6P3339cTTzyhlJQUzZgxQ++9956aNGkiSZo7d65KlCihb7/9Vs2bN1diYqLi4uK0Zs0a1a1bV5I0ffp0xcTEaMeOHapYsaI9OwsAAGCTuLg4p/ezZs1SeHi44uPjdeedd7otZwEAAFyNa/aeUrt27VJSUpKaNWtmTfPx8VGDBg20atUqSVJ8fLxOnz7tNCYqKkpVq1a1xqxevVohISFWQ0qSbrvtNoWEhFhjspKWlqbU1FSnFwAAQH6UkpIiSQoNDZXkvpx1MfITAABwxTXblEpKSpIkRUREOE2PiIiw5iUlJcnb21s33HDDJceEh4dnWn94eLg1Jitjx4617kEVEhKiEiVKXNX+AAAA5AVjjAYOHKjbb79dVatWleS+nHUx8hMAAHDFNduUyuBwOJzeG2MyTbvYxWOyGn+59QwdOlQpKSnWa+/evS5WDgAAkPd69+6tLVu26IMPPsg0zx0560LkJwAA4IprtikVGRkpSZnOxB06dMg6qxcZGan09HQlJydfcszBgwczrf+vv/7KdHbwQj4+PgoODnZ6AQAA5Cd9+vTRokWLtHz5chUvXtya7q6cdTHyEwAAcMU125SKjo5WZGSklixZYk1LT0/XihUrVK9ePUlS7dq15eXl5TTmwIED2rZtmzUmJiZGKSkpWrdunTVm7dq1SklJscYAAAAUJMYY9e7dW59++qmWLVum6Ohop/nuylkAAABXI0+fvnf8+HH99ttv1vtdu3YpISFBoaGhKlmypPr3768xY8aofPnyKl++vMaMGSN/f3917NhRkhQSEqJu3bpp0KBBCgsLU2hoqJ5++mlVq1bNekpM5cqV1aJFC3Xv3l3Tpk2TJPXo0UOtW7fmyXsAAKBA6tWrl95//33973//U1BQkHVFVEhIiPz8/ORwONySswAAAK5GnjalNmzYoEaNGlnvBw4cKEnq2rWrZs+ercGDB+vUqVPq2bOnkpOTVbduXX3zzTcKCgqylnnttddUqFAhdejQQadOnVLjxo01e/ZseXp6WmPmzZunvn37Wk+Padu2raZMmWLTXgIAANhr6tSpkqSGDRs6TZ81a5YeeeQRSXJbzgIAALhSedqUatiwoYwx2c53OByKjY1VbGxstmN8fX01efJkTZ48OdsxoaGhmjt37tWUCgAAkG9cKl9lcFfOAgAAuFLX7D2lAAAAAAAAUHDRlAIAAAAAAIDtaEoBAAAAAADAdjSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAAAAAAwHY0pQAAAAAAAGA7mlIAAAAAAACwHU0pAAAAAAAA2I6mFAAAAAAAAGxHUwoAAAAAAAC2oykFAAAAAAAA29GUAgAAAAAAgO1oSgEAAAAAAMB2NKUAAAAAAABgO5pSAAAAAAAAsB1NKQAAAAAAANiOphQAAAAAAABsR1MKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtaEoBAAAAAADAdjSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAAAAAAwHY0pQAAAAAAAGA7mlIAAAAAAACwHU0pAAAAAAAA2I6mFAAAAAAAAGxHUwoAAAAAAAC2oykFAAAAAAAA29GUAgAAAAAAgO1oSgEAAAAAAMB2NKUAAAAAAABgO5pSAAAAAAAAsB1NKQAAAAAAANiOphQAAAAAAABsR1MKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtaEoBAAAAAADAdjSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAAAAAAwHY0pQAAAAAAAGA7mlIAAAAAAACwHU0pAAAAAAAA2I6mFAAAAAAAAGxHUwoAAAAAAAC2oykFAAAAAAAA29GUAgAAAAAAgO2uq6bUm2++qejoaPn6+qp27dr64Ycf8rokAACAax4ZCgAA5Ibrpim1YMEC9e/fX8OGDdOmTZt0xx13qGXLltqzZ09elwYAAHDNIkMBAIDcct00pSZOnKhu3brp8ccfV+XKlTVp0iSVKFFCU6dOzevSAAAArllkKAAAkFuui6ZUenq64uPj1axZM6fpzZo106pVq/KoKgAAgGsbGQoAAOSmQnldgB3+/vtvnT17VhEREU7TIyIilJSUlOUyaWlpSktLs96npKRIklJTU3Olxn+OH8uV9V6t1FTvHI3Lz/Xn59ql/F1/fq5dyt/1X6u1S/m7fo6dvJPTz/7K1n3+b78xJte2ca1yNUPZnZ8k6Z/Uf3Jt3Vcj1fPy+5yfa5fyd/35uXYpf9efn2uXqD+3cOzknZzW7/J6c5qfzHXgzz//NJLMqlWrnKa/9NJLpmLFilkuM2LECCOJFy9evHjx4sXLSDJ79+61I7ZcU1zNUOQnXrx48eLFi9eFr8vlp+viSqkiRYrI09Mz0xm9Q4cOZTrzl2Ho0KEaOHCg9f7cuXM6cuSIwsLC5HA4crXeq5GamqoSJUpo7969Cg4OzutyXJaf68/PtUv5u/78XLuUv+vPz7VL1J+X8lPtxhgdO3ZMUVFReV2K7VzNUPk1P0n565i8WH6uXcrf9efn2qX8XX9+rl2i/ryUn2uX8k/9Oc1P10VTytvbW7Vr19aSJUt0zz33WNOXLFmidu3aZbmMj4+PfHx8nKYVLlw4N8t0q+Dg4Gv6AL2c/Fx/fq5dyt/15+fapfxdf36uXaL+vJRfag8JCcnrEvKEqxkqv+cnKf8ck1nJz7VL+bv+/Fy7lL/rz8+1S9Sfl/Jz7VL+qD8n+em6aEpJ0sCBA9W5c2fVqVNHMTExevvtt7Vnzx49+eSTeV0aAADANYsMBQAAcst105R64IEHdPjwYY0aNUoHDhxQ1apV9dVXX6lUqVJ5XRoAAMA1iwwFAAByy3XTlJKknj17qmfPnnldRq7y8fHRiBEjMl06n1/k5/rzc+1S/q4/P9cu5e/683PtEvXnpfxc+/WIDHVty8+1S/m7/vxcu5S/68/PtUvUn5fyc+1S/q//Yg5jrsPnGwMAAAAAACBPeeR1AQAAAAAAALj+0JQCAAAAAACA7WhKXQO+++47ORwOHT169KrX1bBhQ/Xv3/+q15MfxcbG6uabb77kmEceeUR333239f5qP68//vhDDodDCQkJLi97Pf+sALjO4XDos88+y3a+O/+WXKsu9xng+kOGcg+7MxT5CYCdrvcMda3nJ5pSNlq1apU8PT3VokULp+n16tXTgQMHFBIScs3UlBM5CTDXmv/+97+aPXt2jsc/8sgjcjgc1issLEwtWrTQli1bJEklSpSwnkR0rUtKSlKfPn1UpkwZ+fj4qESJEmrTpo2WLl2ao+Vnz56twoUL52qNF37eXl5eioiIUNOmTTVz5kydO3cuV7ftTvl5Py4+5jNev/32W16X5uTi/znKkJ9DxaFDh/TEE0+oZMmS8vHxUWRkpJo3b67Vq1fnaHk7/5ZkdYxc+HrkkUdyvQZcX8hQec+VDEV++hf5yTX5dV/yS36SyFBZsetvCfkpazSlbDRz5kz16dNHK1eu1J49e6zp3t7eioyMlMPhyHK5s2fP5tov4exqKqhCQkJcDgYtWrTQgQMHdODAAS1dulSFChVS69atJUmenp6KjIxUoUJZP8jSGKMzZ85cbdlX7Y8//lDt2rW1bNkyjR8/Xlu3blVcXJwaNWqkXr165XV5TjI+7z/++ENff/21GjVqpH79+ql169a5+lmePn3arevLq/1whwuP+YxXdHS005j09PQ8qi535eV+3Xvvvdq8ebPmzJmjX375RYsWLVLDhg115MiRHC1/ub8l7nThsTFp0iQFBwc7Tfvvf//rNN7d/33h+kOGynuuZijyk70KSn6S8m+Gup7zk0SGygnyUzYMbHH8+HETFBRkfv75Z/PAAw+YkSNHWvOWL19uJJnk5GRjjDGzZs0yISEh5vPPPzeVK1c2np6e5vfffzddu3Y17dq1M7GxsaZo0aImKCjI9OjRw6SlpVnratCggenXr5/1/r333jO1a9c2gYGBJiIiwjz00EPm4MGDVk3+/v5GkmnYsKEpVqyY8fPzMzExMWbMmDEmJCTEWs+iRYtMmTJljCQTHR1t2rVrZyQ5vWbNmmWMMWb37t2mbdu2JiAgwAQFBZn777/fJCUlWesaMWKEqVGjhpkxY4YpUaKECQgIME8++aQ5c+aMGTdunImIiDBFixY1L730ktNnmNP1vvXWW6Z48eLGz8/P3HfffdbnaoyxPsPsPq+0tDTzzDPPmKioKOPv72+KFCli6tev71TH999/bySZQ4cOmV27dhlJZtOmTU4/y7i4OFO7dm3j5eVlli1bZo4fP246d+5sAgICTGRkpHn11VczbTs3tWzZ0tx4443m+PHjmeZlfD4TJkwwVatWNf7+/qZ48eLmqaeeMseOHXParwtfI0aMcHudF/98MixdutRIMtOnTzfGGHP06FHTvXt367+DRo0amYSEBKdlFi1aZGrVqmV8fHxMdHS0iY2NNadPn7bmSzJTp041bdu2Nf7+/mb48OG278fljmljjHnxxRdN0aJFTWBgoOnWrZsZMmSIqVGjhttqzWntDRo0ML169TIDBgwwYWFh5s477zTGGPPdd9+ZW265xXh7e5vIyEgzZMgQp885NTXVdOzY0fj7+5vIyEgzceJEtxz72dV58e/Tjz/+2FSpUsV4e3ubUqVKmVdffdVpfKlSpcyLL75ounbtaoKDg02XLl1MWlqa6dWrl4mMjDQ+Pj6mVKlSZsyYMdYyOTn+XJWcnGwkme+++y7bMRnHzt133238/PxMuXLlzP/+979s9z3jb8nChQtN+fLljY+Pj2nSpInZs2fPVdV6sYztZMj4vbhgwQLToEED4+PjY2bOnGn9jr7Qa6+9ZkqVKuU0bcaMGdbPLDIy0vTq1cvpM1i4cKH1fuTIkSY8PNz6HYyCiQyV/zKUp6enKVy4sFm+fLk1n/xEfnLnvlxrGSq/5KdL1UqGsjdDkZ/+xZVSNlmwYIEqVqyoihUr6uGHH9asWbNkjMl2/MmTJzV27Fi988472r59u8LDwyVJS5cuVWJiopYvX64PPvhACxcu1MiRI7NdT3p6ul588UVt3rxZn332mXbt2mVdFrhgwQKVKFFCkrR//34ZY7R+/XoVKlRIM2fOtNaxePFiPfzww2rVqpUkadq0adq0aZNiYmJ00003WZ3dBx54QMYY3X333Tpy5IhWrFihJUuWaOfOnXrggQec6tq5c6e+/vprxcXF6YMPPtDMmTPVqlUr7du3TytWrNC4ceP0/PPPa82aNZKU4/X+9ttv+vDDD/X5558rLi5OCQkJLp3JevTRR/Xjjz9q/vz52rJli0qVKqXVq1fr119/lSQdP35c8+bNU7ly5RQWFpbtegYPHqyxY8cqMTFR1atX1zPPPKPly5dr4cKF+uabb/Tdd98pPj4+x3VdjSNHjiguLk69evVSQEBApvkZZz09PDz0+uuva9u2bZozZ46WLVumwYMHSzp/SevF3fynn37alvol6T//+Y9q1KihTz/9VMYYtWrVSklJSfrqq68UHx+vWrVqqXHjxtbZkIxjtm/fvvrpp580bdo0zZ49W6NHj3Za74gRI9SuXTtt3bpVjz32mO37cbljet68eRo9erTGjRun+Ph4lSxZUlOnTs31OrMzZ84cFSpUSD/++KOmTZumP//8U3fddZduueUWbd68WVOnTtWMGTP00ksvWcsMHDhQP/74oxYtWqQlS5bohx9+0MaNG22pNz4+Xh06dNCDDz6orVu3KjY2Vi+88EKmr5+88sorqlq1quLj4/XCCy/o9ddf16JFi/Thhx9qx44dmjt3rkqXLi1JOTr+rkRgYKACAwP12WefKS0tLdtxI0eOVIcOHbRlyxbddddd6tSp0yW3e/LkSY0ePVpz5szRjz/+qNTUVD344INXXKcrhgwZor59+yoxMVHNmzfP0TJTp05Vr1691KNHD23dulWLFi1SuXLlMo0zxqhfv36aMWOGVq5cme++BgXXkKHyX4Zq166dbrzxRrVo0UK//vor+Yn85PZ9yU8ZKr/lJ4kMJeVdhrou85P9fbDrU7169cykSZOMMcacPn3aFClSxCxZssQYk3VnVlKmrnHXrl1NaGioOXHihDVt6tSpJjAw0Jw9e9YYk/ms1cXWrVtnJJljx46ZevXqmV69ehlJZvHixVZNX375pZFkdW7vuOMOM2bMGLNw4UKTcci89957JjAwMFPX9ptvvjGenp5OXeTt27cbSWbdunXGmPNn4/z9/U1qaqo1pnnz5qZ06dLWfhhjTMWKFc3YsWNdWq+np6fZu3evNebrr782Hh4e5sCBA9ZnmN1Zvt9++804HA7z559/On3mDofDeHl5mYCAACPJFCtWzMTHxxtjTLZn+j777DNrHceOHTPe3t5m/vz51rTDhw8bPz8/W870rV271kgyn376qUvLffjhhyYsLMx6f3E3Pzdkd+bGGGMeeOABU7lyZbN06VITHBxs/vnnH6f5ZcuWNdOmTTPG/HvMXui9994zxYoVs95LMv3793fvDvy/nOxHTo7punXrOp3lMMaY+vXr5/qVUp6eniYgIMB63XfffaZBgwbm5ptvdhr73HPPmYoVK5pz585Z09544w3rd1Jqaqrx8vIyH330kTX/6NGjxt/f3y1XSl1cZ0BAgPH19bV+n3bs2NE0bdrUablnnnnGVKlSxXpfqlQpc/fddzuN6dOnj/nPf/7jtF8ZcnL8XamPP/7Y3HDDDcbX19fUq1fPDB061GzevNmaL8k8//zz1vvjx48bh8Nhvv76a2NM9n9L1qxZYy2TmJhoJJm1a9deVa0Xyu5MX8bfvAw5OdMXFRVlhg0blu22JJmPPvrIPPzww6ZSpUpOv+9RcJGh8l+Gyvgd7enpaby8vMhP5Kccy68ZKr/kp+xqJUPZn6HIT//iSikb7NixQ+vWrbM6q4UKFdIDDzzgdCbtYt7e3qpevXqm6TVq1JC/v7/1PiYmRsePH9fevXuzXM+mTZvUrl07lSpVSkFBQWrYsKEkacWKFVq3bp3+85//SJJq1qxp1VSsWDFJss5CxsfHa9SoUVb9gYGB6t69u44fP57pPg2JiYkqUaKEdfZQkqpUqaLChQsrMTHRmla6dGkFBQVZ7yMiIlSlShV5eHg4TTt06JBL6y1ZsqSKFy/u9PmcO3dOO3bsyPLzudDGjRtljFGFChWsjvu8efMkSU2aNFFCQoLWrl2rZs2aqWXLltq9e3e266pTp4717507dyo9PV0xMTHWtNDQUFWsWPGyNblDxs/xct+RXr58uZo2baobb7xRQUFB6tKliw4fPqwTJ07YUeZlGWPkcDgUHx+v48ePKywszPo5BQYGateuXdq5c6ekf4/ZC+d3795dBw4c0MmTJ611Xvhzsns/cnJM79ixQ7feeqvT8he/zw2NGjVSQkKC9Xr99dclZf68EhMTFRMT43Rs1a9fX8ePH9e+ffv0+++/6/Tp0041h4SEuO3Yv7jOhIQEvfPOO0711a9f32mZ+vXr69dff9XZs2etaRfv1yOPPKKEhARVrFhRffv21TfffGPNy8nxd6Xuvfde7d+/X4sWLVLz5s313XffqVatWk5nJS/8uxAQEKCgoCDr92RWChUq5LR/lSpVyvR7M7e4+t/XoUOHtH//fjVu3PiS4wYMGKDVq1frhx9+cPp9j4KJDJU/M9S8efOsz6BJkybkpzxUUPLThftyrWao/JKfsqqVDJVZXmWo6zE/ZX13QbjVjBkzdObMGd14443WNGOMvLy8lJycnOUyfn5+Lt1oLauxJ06cULNmzdSsWTPNnTtXRYsW1Z49e9S8eXN99NFHOnPmjO6//35JUrFixayannzySatGSTp37pxGjhwpPz8/9e3b13p87+uvv67vv//eaZsZfywudvF0Ly+vTPVnNS0jsOV0vdl9Ljn5LM+dOydPT0/Fx8fL09NT0vnLyI8dO6aZM2cqMjJSklS7dm2FhIRo+vTpevzxx7Nc14WXeWd8jnmlfPny1h/wrJ60IUm7d+/WXXfdpSeffFIvvviiQkNDtXLlSnXr1u2aucFeYmKioqOjde7cORUrVkzfffddpjEZl9JnHLPt27fPNMbX19f6d1aX4+e2jP3I6TF98Rg7jqeAgIAsL/m9+PPKah8uDPHZBXp37UNWde7bty9H9V28ngvVqlVLu3bt0tdff61vv/1WHTp0UJMmTfTxxx/n6Pi7Gr6+vmratKmaNm2q4cOH6/HHH9eIESOsrwxd6vdkdrI6zuy4GfrFn6uHh0emz//C3y9+fn45Wm/Tpk31wQcfaPHixerUqdPVF4prGhkqf2aojPw0depUBQYGKjIykvyURwpKfpKu/QyVX/JTdrWSoTLLiwx1PeYnrpTKZWfOnNG7776rCRMmOHWiN2/erFKlSllX4uTU5s2bderUKev9mjVrFBgYmGW38+eff9bff/+tl19+WXfccYcqVapkdYO/+OILTZgwweqIf//991ZNX331laTz9086ceKEatWqpR07digpKUmSVK5cOZUrV06RkZFOnXLp/FmKPXv2OJ11/Omnn5SSkqLKlSu7tK9Xst49e/Zo//791vvVq1fLw8NDFSpUuOw2atasqbNnz+rQoUPWPgYHBysgIMBqSEnnfxF5eHg4/RwupVy5cvLy8rLu7SBJycnJ+uWXX3K0/NUKDQ1V8+bN9cYbb2R51u7o0aPasGGDzpw5owkTJui2225ThQoVnD5H6fyZ54t/3nZZtmyZtm7dqnvvvVe1atVSUlKSChUqZP2cMl5FihSRJOuYvXh+uXLlnM4k5+V+5OSYrlixotatW+e0jg0bNtha86VUqVJFq1atcvpDuWrVKgUFBenGG29U2bJl5eXl5bQPqamp1j3a7Khv5cqVTtNWrVqlChUqWI3n7AQHB+uBBx7Q9OnTtWDBAn3yySc6cuRIjo4/d+/D1ZxtP3PmjNMxs2PHDh09elSVKlVyR3kuKVq0qJKSkpyOl4z/QZekoKAglS5d+rKPWW/btq3ef/99Pf7445o/f35ulYtrABkq/2aojPyUsa8S+SkvFJT8dPG+5PcMda3np4wayVDXRoa6HvITV0rlsi+++ELJycnq1q2bQkJCnObdd999mjFjhl577bUcry89PV3dunXT888/r927d2vEiBHq3bt3ln8oSpYsKW9vb02ePFlPPvmktm3bphdffFHS+V9s3bp106ZNmyT9e8nrfffdp08++UTS+a7rc889p8cff1yPP/641bVNTEzUli1btG7dOu3atUsJCQkqXry4goKC1KRJE1WvXl2dOnXSpEmTdObMGfXs2VMNGjS4qkt9c7peX19fde3aVa+++qpSU1PVt29fdejQwamplJ0KFSqoU6dO6tKliyZMmKCaNWvq77//1q+//qq5c+eqSZMmSk5O1pQpU3T8+HG1adMmR7UHBgaqW7dueuaZZxQWFqaIiAgNGzbM1j/ub775purVq6dbb71Vo0aNUvXq1XXmzBktWbJEU6dO1QcffKAzZ85o8uTJatOmjX788Ue99dZbTusoXbq0jh8/rqVLl1pfgbjwaxDukpaWpqSkJJ09e1YHDx5UXFycxo4dq9atW6tLly7y8PBQTEyM7r77bo0bN04VK1bU/v379dVXX+nuu+9WnTp1NHz4cLVu3VolSpTQ/fffLw8PD23ZskVbt251uolkbsrJflzumO7Tp4+6d++uOnXqqF69elqwYIG2bNmiMmXK2LIPl9OzZ09NmjRJffr0Ue/evbVjxw6NGDFCAwcOlIeHh4KCgtS1a1c988wzCg0NVXh4uEaMGCEPDw9brtQZNGiQbrnlFr344ot64IEHtHr1ak2ZMkVvvvnmJZd77bXXVKxYMd18883y8PDQRx99pMjISBUuXFhNmjS57PF3JQ4fPqz7779fjz32mKpXr66goCBt2LBB48ePV7t27a5ondL5s4J9+vTR66+/Li8vL/Xu3Vu33XabLV8DvVjDhg31119/afz48brvvvsUFxenr7/+WsHBwdaY2NhYPfnkkwoPD1fLli117Ngx/fjjj+rTp4/Tuu655x6999576ty5swoVKqT77rvP7t2BDchQ+TdDHT9+XIcOHdLzzz+vSpUqqXbt2uQn8pNb9yU/Z6hrPT9JZCjp2slQ10V+cvM9qnCR1q1bm7vuuivLefHx8UaSmTBhQpaPoLxYxo3/hg8fbsLCwkxgYKB5/PHHnW4Wd/FNOt9//31TunRp4+PjY2JiYsyiRYuMJHP77bcbYzLf1C2jJklm2rRpply5csbX19fUrVvXlC1b1kgywcHB5tZbbzVvvPGGuffee03hwoWv6HHGWe3bhS7el5yu98033zRRUVHG19fXtG/f3hw5ciTb7Vy8jfT0dDN8+HBTunRp4+XlZd3wL+MVFBRkbrnlFvPxxx8bY7K/UeeFj1A25vzNOh9++GHj7+9vIiIizPjx4219pLExxuzfv9/06tXLlCpVynh7e5sbb7zRtG3b1npc88SJE61HWjdv3ty8++67mfblySefNGFhYbn6SOOMz7pQoUKmaNGipkmTJmbmzJlON3BNTU01ffr0MVFRUcbLy8uUKFHCdOrUyemGl3FxcaZevXrGz8/POmbffvtta74uejRqXuxHTh5nPGrUKFOkSBETGBhoHnvsMdO3b19z22235UrdGbVn90jjrI7XK3mk8a233mqeffbZXKkzu8cZe3l5mZIlS5pXXnnFaXypUqXMa6+95jTt7bffNjfffLMJCAgwwcHBpnHjxmbjxo1O+3S5489V//zzj3n22WdNrVq1TEhIiPH39zcVK1Y0zz//vDl58qQxJutjNiQkxPrdm93jjD/55BNTpkwZ4+3tbf7zn/+YP/7444rrzEp2N+rM6jHDU6dOtR5j36VLFzN69OhMjzR+6623TMWKFY2Xl5cpVqyY6dOnjzXv4s9gwYIFxtfX13zyySdu3SdcG8hQ+TdDORwO8hP5KVf35VrLUPklP12qVjKUvRmK/PQvhzF5/IVt5Ngjjzyio0eP6rPPPsvrUgDkkaZNmyoyMlLvvfdeXpdyRU6cOKEbb7xREyZMULdu3fK6nAJt9uzZ6t+/v44ePZrXpQB5jgwFID9nKPKTvchQ9uLrewBwjTp58qTeeustNW/eXJ6envrggw/07bffasmSJXldWo5t2rRJP//8s2699ValpKRo1KhRknRVl1MDAABcSn7PUOQnXE9oSgHANcrhcOirr77SSy+9pLS0NFWsWFGffPKJmjRpktelueTVV1/Vjh075O3trdq1a+uHH37IlRtaAgAASAUjQ5GfcL3g63sAAAAAAACwXd4+2xMAAAAAAADXJZpSAAAAAAAAsB1NKQAAAAAAANiOphQAAAAAAABsR1MKAAAAAAAAtqMpBQD/z+Fw6LPPPsvrMgAAAPIN8hOAq0FTCsB1IykpSX369FGZMmXk4+OjEiVKqE2bNlq6dGlelwYAAHBNIj8ByE2F8roAALDDH3/8ofr166tw4cIaP368qlevrtOnT2vx4sXq1auXfv7557wuEQAA4JpCfgKQ27hSCsB1oWfPnnI4HFq3bp3uu+8+VahQQTfddJMGDhyoNWvWZLnMkCFDVKFCBfn7+6tMmTJ64YUXdPr0aWv+5s2b1ahRIwUFBSk4OFi1a9fWhg0bJEm7d+9WmzZtdMMNNyggIEA33XSTvvrqK1v2FQAAwB3ITwByG1dKASjwjhw5ori4OI0ePVoBAQGZ5hcuXDjL5YKCgjR79mxFRUVp69at6t69u4KCgjR48GBJUqdOnVSzZk1NnTpVnp6eSkhIkJeXlySpV69eSk9P1/fff6+AgAD99NNPCgwMzLV9BAAAcCfyEwA70JQCUOD99ttvMsaoUqVKLi33/PPPW/8uXbq0Bg0apAULFlihas+ePXrmmWes9ZYvX94av2fPHt17772qVq2aJKlMmTJXuxsAAAC2IT8BsANf3wNQ4BljJJ1/OowrPv74Y91+++2KjIxUYGCgXnjhBe3Zs8eaP3DgQD3++ONq0qSJXn75Ze3cudOa17dvX7300kuqX7++RowYoS1btrhnZwAAAGxAfgJgB5pSAAq88uXLy+FwKDExMcfLrFmzRg8++KBatmypL774Qps2bdKwYcOUnp5ujYmNjdX27dvVqlUrLVu2TFWqVNHChQslSY8//rh+//13de7cWVu3blWdOnU0efJkt+8bAABAbiA/AbCDw2S0wAGgAGvZsqW2bt2qHTt2ZLovwtGjR1W4cGE5HA4tXLhQd999tyZMmKA333zT6ezd448/ro8//lhHjx7NchsPPfSQTpw4oUWLFmWaN3ToUH355Zec8QMAAPkG+QlAbuNKKQDXhTfffFNnz57Vrbfeqk8++US//vqrEhMT9frrrysmJibT+HLlymnPnj2aP3++du7cqddff906iydJp06dUu/evfXdd99p9+7d+vHHH7V+/XpVrlxZktS/f38tXrxYu3bt0saNG7Vs2TJrHgAAQH5AfgKQ27jROYDrQnR0tDZu3KjRo0dr0KBBOnDggIoWLaratWtr6tSpmca3a9dOAwYMUO/evZWWlqZWrVrphRdeUGxsrCTJ09NThw8fVpcuXXTw4EEVKVJE7du318iRIyVJZ8+eVa9evbRv3z4FBwerRYsWeu211+zcZQAAgKtCfgKQ2/j6HgAAAAAAAGzH1/cAAAAAAABgO5pSAAAAAAAAsB1NKQAAAAAAANiOphQAAAAAAABsR1MKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtaEoBAAAAAADAdjSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbPd/KkPaA2L9dqUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualization: Random Samples from Training Set\n", + "# This helps confirm the dataset's integrity and diversity\n", + "labels = ['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer', \n", + " 'Dog', 'Frog', 'Horse', 'Ship', 'Truck']\n", + "\n", + "fig, axes = plt.subplots(5, 5, figsize=(10, 10))\n", + "axes = axes.ravel()\n", + "\n", + "for i in range(25): # Displays 25 random images\n", + " idx = np.random.randint(0, len(X_train))\n", + " axes[i].imshow(X_train[idx])\n", + " axes[i].set_title(labels[y_train[idx][0]], fontsize=8)\n", + " axes[i].axis('off')\n", + "\n", + "plt.subplots_adjust(hspace=0.5)\n", + "plt.show()\n", + "\n", + "# Visualization: Class Distribution in Training and Testing Sets\n", + "# Helps to confirm that the dataset is balanced across the 10 classes\n", + "train_counts = np.unique(y_train, return_counts=True)[1]\n", + "test_counts = np.unique(y_test, return_counts=True)[1]\n", + "\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.bar(labels, train_counts, color='skyblue')\n", + "plt.title('Class Distribution in Training Set')\n", + "plt.ylabel('Number of Samples')\n", + "plt.xlabel('Class')\n", + "\n", + "plt.subplot(1, 2, 2)\n", + "plt.bar(labels, test_counts, color='lightgreen')\n", + "plt.title('Class Distribution in Testing Set')\n", + "plt.ylabel('Number of Samples')\n", + "plt.xlabel('Class')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "48ddfa5d-b95b-41b4-b2b3-b014ba49e2a0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/20\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/anaconda3/lib/python3.12/site-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:121: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.\n", + " self._warn_if_super_not_called()\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m288s\u001b[0m 172ms/step - accuracy: 0.4486 - loss: 1.6219 - val_accuracy: 0.4642 - val_loss: 1.6542\n", + "Epoch 2/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m372s\u001b[0m 238ms/step - accuracy: 0.5762 - loss: 1.2448 - val_accuracy: 0.5240 - val_loss: 6.6582\n", + "Epoch 3/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m336s\u001b[0m 215ms/step - accuracy: 0.6349 - loss: 1.0760 - val_accuracy: 0.5031 - val_loss: 2.1518\n", + "Epoch 4/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m340s\u001b[0m 218ms/step - accuracy: 0.6817 - loss: 0.9320 - val_accuracy: 0.6785 - val_loss: 3.1231\n", + "Epoch 5/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m331s\u001b[0m 212ms/step - accuracy: 0.7334 - loss: 0.7748 - val_accuracy: 0.7669 - val_loss: 0.6808\n", + "Epoch 6/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m329s\u001b[0m 211ms/step - accuracy: 0.7554 - loss: 0.7353 - val_accuracy: 0.7100 - val_loss: 1.3602\n", + "Epoch 7/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m327s\u001b[0m 209ms/step - accuracy: 0.7017 - loss: 0.9077 - val_accuracy: 0.6668 - val_loss: 1.4545\n", + "Epoch 8/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m313s\u001b[0m 200ms/step - accuracy: 0.7174 - loss: 0.8468 - val_accuracy: 0.6995 - val_loss: 0.9865\n", + "Epoch 9/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m333s\u001b[0m 213ms/step - accuracy: 0.7187 - loss: 0.8267 - val_accuracy: 0.7559 - val_loss: 1.3768\n", + "Epoch 10/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m354s\u001b[0m 226ms/step - accuracy: 0.7742 - loss: 0.6522 - val_accuracy: 0.7368 - val_loss: 7.8946\n", + "Epoch 11/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m344s\u001b[0m 220ms/step - accuracy: 0.7880 - loss: 0.6287 - val_accuracy: 0.5612 - val_loss: 3.5514\n", + "Epoch 12/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m530s\u001b[0m 339ms/step - accuracy: 0.7711 - loss: 0.6693 - val_accuracy: 0.3777 - val_loss: 3.1805\n", + "Epoch 13/20\n", + "\u001b[1m 856/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m2:38\u001b[0m 224ms/step - accuracy: 0.7089 - loss: 0.8771" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[9], line 23\u001b[0m\n\u001b[1;32m 16\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(\n\u001b[1;32m 17\u001b[0m loss\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcategorical_crossentropy\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 18\u001b[0m optimizer\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124madam\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 19\u001b[0m metrics\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m 20\u001b[0m )\n\u001b[1;32m 22\u001b[0m \u001b[38;5;66;03m# Train the Model\u001b[39;00m\n\u001b[0;32m---> 23\u001b[0m history \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mfit(\n\u001b[1;32m 24\u001b[0m datagen\u001b[38;5;241m.\u001b[39mflow(X_train, y_train_cat, batch_size\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m32\u001b[39m),\n\u001b[1;32m 25\u001b[0m validation_data\u001b[38;5;241m=\u001b[39m(X_test, y_test_cat),\n\u001b[1;32m 26\u001b[0m epochs\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m20\u001b[39m\n\u001b[1;32m 27\u001b[0m )\n\u001b[1;32m 29\u001b[0m \u001b[38;5;66;03m# Save the Model\u001b[39;00m\n\u001b[1;32m 30\u001b[0m model\u001b[38;5;241m.\u001b[39msave(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdensenet_cifar10.keras\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/keras/src/utils/traceback_utils.py:117\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 116\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 117\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 118\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 119\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/keras/src/backend/tensorflow/trainer.py:371\u001b[0m, in \u001b[0;36mTensorFlowTrainer.fit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq)\u001b[0m\n\u001b[1;32m 369\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step, iterator \u001b[38;5;129;01min\u001b[39;00m epoch_iterator:\n\u001b[1;32m 370\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[0;32m--> 371\u001b[0m logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrain_function(iterator)\n\u001b[1;32m 372\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_end(step, logs)\n\u001b[1;32m 373\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstop_training:\n", + "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/keras/src/backend/tensorflow/trainer.py:219\u001b[0m, in \u001b[0;36mTensorFlowTrainer._make_function..function\u001b[0;34m(iterator)\u001b[0m\n\u001b[1;32m 215\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfunction\u001b[39m(iterator):\n\u001b[1;32m 216\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\n\u001b[1;32m 217\u001b[0m iterator, (tf\u001b[38;5;241m.\u001b[39mdata\u001b[38;5;241m.\u001b[39mIterator, tf\u001b[38;5;241m.\u001b[39mdistribute\u001b[38;5;241m.\u001b[39mDistributedIterator)\n\u001b[1;32m 218\u001b[0m ):\n\u001b[0;32m--> 219\u001b[0m opt_outputs \u001b[38;5;241m=\u001b[39m multi_step_on_iterator(iterator)\n\u001b[1;32m 220\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m opt_outputs\u001b[38;5;241m.\u001b[39mhas_value():\n\u001b[1;32m 221\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m\n", + "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/tensorflow/python/util/traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py:833\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 830\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 832\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[0;32m--> 833\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[1;32m 835\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[1;32m 836\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", + "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py:878\u001b[0m, in \u001b[0;36mFunction._call\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 875\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[1;32m 876\u001b[0m \u001b[38;5;66;03m# In this case we have not created variables on the first call. So we can\u001b[39;00m\n\u001b[1;32m 877\u001b[0m \u001b[38;5;66;03m# run the first trace but we should fail if variables are created.\u001b[39;00m\n\u001b[0;32m--> 878\u001b[0m results \u001b[38;5;241m=\u001b[39m tracing_compilation\u001b[38;5;241m.\u001b[39mcall_function(\n\u001b[1;32m 879\u001b[0m args, kwds, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_variable_creation_config\n\u001b[1;32m 880\u001b[0m )\n\u001b[1;32m 881\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_created_variables:\n\u001b[1;32m 882\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCreating variables on a non-first call to a function\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 883\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m decorated with tf.function.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/tensorflow/python/eager/polymorphic_function/tracing_compilation.py:139\u001b[0m, in \u001b[0;36mcall_function\u001b[0;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[1;32m 137\u001b[0m bound_args \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mbind(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 138\u001b[0m flat_inputs \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39munpack_inputs(bound_args)\n\u001b[0;32m--> 139\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m function\u001b[38;5;241m.\u001b[39m_call_flat( \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[1;32m 140\u001b[0m flat_inputs, captured_inputs\u001b[38;5;241m=\u001b[39mfunction\u001b[38;5;241m.\u001b[39mcaptured_inputs\n\u001b[1;32m 141\u001b[0m )\n", + "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/tensorflow/python/eager/polymorphic_function/concrete_function.py:1322\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[0;34m(self, tensor_inputs, captured_inputs)\u001b[0m\n\u001b[1;32m 1318\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[1;32m 1319\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[1;32m 1320\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[1;32m 1321\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[0;32m-> 1322\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_inference_function\u001b[38;5;241m.\u001b[39mcall_preflattened(args)\n\u001b[1;32m 1323\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[1;32m 1324\u001b[0m args,\n\u001b[1;32m 1325\u001b[0m possible_gradient_type,\n\u001b[1;32m 1326\u001b[0m executing_eagerly)\n\u001b[1;32m 1327\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n", + "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/tensorflow/python/eager/polymorphic_function/atomic_function.py:216\u001b[0m, in \u001b[0;36mAtomicFunction.call_preflattened\u001b[0;34m(self, args)\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcall_preflattened\u001b[39m(\u001b[38;5;28mself\u001b[39m, args: Sequence[core\u001b[38;5;241m.\u001b[39mTensor]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[1;32m 215\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Calls with flattened tensor inputs and returns the structured output.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 216\u001b[0m flat_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcall_flat(\u001b[38;5;241m*\u001b[39margs)\n\u001b[1;32m 217\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mpack_output(flat_outputs)\n", + "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/tensorflow/python/eager/polymorphic_function/atomic_function.py:251\u001b[0m, in \u001b[0;36mAtomicFunction.call_flat\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m record\u001b[38;5;241m.\u001b[39mstop_recording():\n\u001b[1;32m 250\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mexecuting_eagerly():\n\u001b[0;32m--> 251\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mcall_function(\n\u001b[1;32m 252\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname,\n\u001b[1;32m 253\u001b[0m \u001b[38;5;28mlist\u001b[39m(args),\n\u001b[1;32m 254\u001b[0m \u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mflat_outputs),\n\u001b[1;32m 255\u001b[0m )\n\u001b[1;32m 256\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 257\u001b[0m outputs \u001b[38;5;241m=\u001b[39m make_call_op_in_graph(\n\u001b[1;32m 258\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 259\u001b[0m \u001b[38;5;28mlist\u001b[39m(args),\n\u001b[1;32m 260\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mfunction_call_options\u001b[38;5;241m.\u001b[39mas_attrs(),\n\u001b[1;32m 261\u001b[0m )\n", + "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/tensorflow/python/eager/context.py:1552\u001b[0m, in \u001b[0;36mContext.call_function\u001b[0;34m(self, name, tensor_inputs, num_outputs)\u001b[0m\n\u001b[1;32m 1550\u001b[0m cancellation_context \u001b[38;5;241m=\u001b[39m cancellation\u001b[38;5;241m.\u001b[39mcontext()\n\u001b[1;32m 1551\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_context \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 1552\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute(\n\u001b[1;32m 1553\u001b[0m name\u001b[38;5;241m.\u001b[39mdecode(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mutf-8\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 1554\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39mnum_outputs,\n\u001b[1;32m 1555\u001b[0m inputs\u001b[38;5;241m=\u001b[39mtensor_inputs,\n\u001b[1;32m 1556\u001b[0m attrs\u001b[38;5;241m=\u001b[39mattrs,\n\u001b[1;32m 1557\u001b[0m ctx\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 1558\u001b[0m )\n\u001b[1;32m 1559\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1560\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[1;32m 1561\u001b[0m name\u001b[38;5;241m.\u001b[39mdecode(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mutf-8\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 1562\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39mnum_outputs,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1566\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_context,\n\u001b[1;32m 1567\u001b[0m )\n", + "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/tensorflow/python/eager/execute.py:53\u001b[0m, in \u001b[0;36mquick_execute\u001b[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 52\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[0;32m---> 53\u001b[0m tensors \u001b[38;5;241m=\u001b[39m pywrap_tfe\u001b[38;5;241m.\u001b[39mTFE_Py_Execute(ctx\u001b[38;5;241m.\u001b[39m_handle, device_name, op_name,\n\u001b[1;32m 54\u001b[0m inputs, attrs, num_outputs)\n\u001b[1;32m 55\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 56\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# Data Augmentation\n", + "# Uses ImageDataGenerator to improve the model's generalization.\n", + "# This includes horizontal flipping and width/height shifts.\n", + "# These transformations simulate real-world variations in the dataset.\n", + "datagen = ImageDataGenerator(\n", + " width_shift_range=0.1,\n", + " height_shift_range=0.1,\n", + " horizontal_flip=True\n", + ")\n", + "datagen.fit(X_train)\n", + "\n", + "# Define DenseNet121 Model\n", + "# DenseNet121 serves as the base model.\n", + "# For CIFAR-10, the default classification layer has been excluded and a pooling layer has been added.\n", + "# The global average pooling layer helps to reduce the feature maps to a single vector.\n", + "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", + "model = Sequential([\n", + " base_model,\n", + " Dense(10, activation='softmax') # The output layer has 10 neurons, one per class, and has a softmax activation to output probabilities.\n", + "])\n", + "\n", + "# Model Training\n", + "# The model uses categorical cross-entropy, an adam optimizer (has an adaptive learning rate) and the accuracy metric to track the % of correct predictions.\n", + "model.compile(\n", + " loss='categorical_crossentropy',\n", + " optimizer='adam',\n", + " metrics=['accuracy']\n", + ")\n", + "\n", + "# Model is trained for 20 epochs, with data augmentation applied during the training.\n", + "history = model.fit(\n", + " datagen.flow(X_train, y_train_cat, batch_size=32),\n", + " validation_data=(X_test, y_test_cat),\n", + " epochs=20\n", + ")\n", + "\n", + "# Saves the Model\n", + "# The trained model has been saved in the keras format (versus h5) to ensure compatibility with future versions of TensorFlow.\n", + "model.save('densenet_cifar10.keras') # Save in the recommended .keras format" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "8694ef6c-4369-43a0-a690-f1a4e5dd4312", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 30ms/step - accuracy: 0.7862 - loss: 0.6283\n", + "Test Accuracy: 0.7888\n" + ] + } + ], + "source": [ + "# Evaluates the model looking at its test accuracy, generating a classification report, and a confusion matrix.\n", + "# Accuracy - % of correct predictions\n", + "evaluation = model.evaluate(X_test, y_test_cat)\n", + "print(f\"Test Accuracy: {evaluation[1]:.4f}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "95278e37-7532-4444-a43e-ee9b1a943800", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 33ms/step\n", + "\n", + "Classification Report:\n", + " precision recall f1-score support\n", + "\n", + " Airplane 0.80 0.82 0.81 1000\n", + " Automobile 0.85 0.91 0.88 1000\n", + " Bird 0.84 0.65 0.73 1000\n", + " Cat 0.71 0.52 0.60 1000\n", + " Deer 0.85 0.69 0.76 1000\n", + " Dog 0.66 0.82 0.73 1000\n", + " Frog 0.77 0.91 0.83 1000\n", + " Horse 0.81 0.85 0.83 1000\n", + " Ship 0.88 0.83 0.85 1000\n", + " Truck 0.75 0.90 0.82 1000\n", + "\n", + " accuracy 0.79 10000\n", + " macro avg 0.79 0.79 0.79 10000\n", + "weighted avg 0.79 0.79 0.79 10000\n", + "\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAIGCAYAAABTWVt5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtrklEQVR4nOzddVwU6R/A8Q/dnZICKoiiKLZnt+Lp2fU7u7C7u87GjjPA1rO74846PTtQzwQFBOnO/f2Brq6gguwCHs/7Xvs6Z+aZmS+zs7PffZ5nnlGSSCQSBEEQBEEQChnl/A5AEARBEAQhP4gkSBAEQRCEQkkkQYIgCIIgFEoiCRIEQRAEoVASSZAgCIIgCIWSSIIEQRAEQSiURBIkCIIgCEKhJJIgQRAEQRAKJZEECYIgCIJQKIkkSBB+IHfv3qV79+44ODigqamJrq4u5cuXZ968eYSHhyt037du3aJWrVoYGBigpKSEt7e33PehpKTE1KlT5b7db/Hx8UFJSQklJSXOnz+fablEIqFYsWIoKSlRu3bt79rHypUr8fHxydE658+f/2JMgiDknmp+ByAIQvb8/vvveHl54ezszKhRo3B1dSUlJYV//vmH1atXc+XKFfbt26ew/ffo0YO4uDh27NiBkZERRYsWlfs+rly5go2Njdy3m116enqsX78+U6Jz4cIFnj17hp6e3ndve+XKlZiamtKtW7dsr1O+fHmuXLmCq6vrd+9XEIQvE0mQIPwArly5Qv/+/WnQoAH79+9HQ0NDuqxBgwaMGDGC48ePKzSG+/fv07t3b5o0aaKwfVSpUkVh286O9u3bs3XrVlasWIG+vr50/vr166latSrR0dF5EkdKSgpKSkro6+vn+zERhP8y0RwmCD+A2bNno6SkxNq1a2USoA/U1dX5+eefpdPp6enMmzcPFxcXNDQ0MDc359dff+X169cy69WuXZvSpUtz/fp1atSogba2No6Ojvz222+kp6cDH5uKUlNTWbVqlbTZCGDq1KnSf3/qwzovX76Uzjt79iy1a9fGxMQELS0t7OzsaN26NfHx8dIyWTWH3b9/nxYtWmBkZISmpibu7u74+vrKlPnQbLR9+3YmTJiAlZUV+vr61K9fn8ePH2fvIAMdO3YEYPv27dJ5UVFR7Nmzhx49emS5zrRp06hcuTLGxsbo6+tTvnx51q9fz6fPpi5atCgPHjzgwoUL0uP3oSbtQ+ybN29mxIgRWFtbo6GhwdOnTzM1h7179w5bW1uqVatGSkqKdPsPHz5ER0eH//3vf9n+WwVBEEmQIBR4aWlpnD17Fg8PD2xtbbO1Tv/+/RkzZgwNGjTg4MGDzJgxg+PHj1OtWjXevXsnUzY4OJjOnTvTpUsXDh48SJMmTRg3bhxbtmwBoFmzZly5cgWANm3acOXKFel0dr18+ZJmzZqhrq7Ohg0bOH78OL/99hs6OjokJyd/cb3Hjx9TrVo1Hjx4wNKlS9m7dy+urq5069aNefPmZSo/fvx4Xr16xbp161i7di3//vsvzZs3Jy0tLVtx6uvr06ZNGzZs2CCdt337dpSVlWnfvv0X/7a+ffuya9cu9u7dS6tWrRg0aBAzZsyQltm3bx+Ojo6UK1dOevw+b7ocN24c/v7+rF69mkOHDmFubp5pX6ampuzYsYPr168zZswYAOLj42nbti12dnasXr06W3+nIAjvSQRBKNCCg4MlgKRDhw7ZKu/n5ycBJF5eXjLz//77bwkgGT9+vHRerVq1JIDk77//linr6uoqadSokcw8QDJgwACZeVOmTJFkdRnZuHGjBJC8ePFCIpFIJLt375YAktu3b381dkAyZcoU6XSHDh0kGhoaEn9/f5lyTZo0kWhra0siIyMlEolEcu7cOQkgadq0qUy5Xbt2SQDJlStXvrrfD/Fev35duq379+9LJBKJpGLFipJu3bpJJBKJpFSpUpJatWp9cTtpaWmSlJQUyfTp0yUmJiaS9PR06bIvrfthfzVr1vzisnPnzsnMnzt3rgSQ7Nu3T9K1a1eJlpaW5O7du1/9GwVByEzUBAnCf8y5c+cAMnXArVSpEiVLluTMmTMy8y0tLalUqZLMvDJlyvDq1Su5xeTu7o66ujp9+vTB19eX58+fZ2u9s2fPUq9evUw1YN26dSM+Pj5TjdSnTYKQ8XcAOfpbatWqhZOTExs2bODevXtcv379i01hH2KsX78+BgYGqKiooKamxuTJkwkLCyMkJCTb+23dunW2y44aNYpmzZrRsWNHfH19WbZsGW5ubtleXxCEDCIJEoQCztTUFG1tbV68eJGt8mFhYQAUKVIk0zIrKyvp8g9MTEwyldPQ0CAhIeE7os2ak5MTp0+fxtzcnAEDBuDk5ISTkxNLliz56nphYWFf/Ds+LP/U53/Lh/5TOflblJSU6N69O1u2bGH16tWUKFGCGjVqZFn22rVrNGzYEMi4e+/SpUtcv36dCRMm5Hi/Wf2dX4uxW7duJCYmYmlpKfoCCcJ3EkmQIBRwKioq1KtXjxs3bmTq2JyVD4lAUFBQpmWBgYGYmprKLTZNTU0AkpKSZOZ/3u8IoEaNGhw6dIioqCiuXr1K1apVGTp0KDt27Pji9k1MTL74dwBy/Vs+1a1bN969e8fq1avp3r37F8vt2LEDNTU1Dh8+TLt27ahWrRoVKlT4rn1m1cH8S4KCghgwYADu7u6EhYUxcuTI79qnIBR2IgkShB/AuHHjkEgk9O7dO8uOxCkpKRw6dAiAunXrAkg7Nn9w/fp1/Pz8qFevntzi+nCH0927d2Xmf4glKyoqKlSuXJkVK1YAcPPmzS+WrVevHmfPnpUmPR9s2rQJbW1thd0+bm1tzahRo2jevDldu3b9YjklJSVUVVVRUVGRzktISGDz5s2Zysqrdi0tLY2OHTuipKTEsWPHmDNnDsuWLWPv3r253rYgFDZinCBB+AFUrVqVVatW4eXlhYeHB/3796dUqVKkpKRw69Yt1q5dS+nSpWnevDnOzs706dOHZcuWoaysTJMmTXj58iWTJk3C1taWYcOGyS2upk2bYmxsTM+ePZk+fTqqqqr4+PgQEBAgU2716tWcPXuWZs2aYWdnR2JiovQOrPr1639x+1OmTOHw4cPUqVOHyZMnY2xszNatWzly5Ajz5s3DwMBAbn/L53777bdvlmnWrBmLFi2iU6dO9OnTh7CwMBYsWJDlMAZubm7s2LGDnTt34ujoiKam5nf145kyZQp//fUXJ0+exNLSkhEjRnDhwgV69uxJuXLlcHBwyPE2BaGwEkmQIPwgevfuTaVKlVi8eDFz584lODgYNTU1SpQoQadOnRg4cKC07KpVq3BycmL9+vWsWLECAwMDGjduzJw5c7LsA/S99PX1OX78OEOHDqVLly4YGhrSq1cvmjRpQq9evaTl3N3dOXnyJFOmTCE4OBhdXV1Kly7NwYMHpX1qsuLs7Mzly5cZP348AwYMICEhgZIlS7Jx48YcjbysKHXr1mXDhg3MnTuX5s2bY21tTe/evTE3N6dnz54yZadNm0ZQUBC9e/cmJiYGe3t7mXGUsuPUqVPMmTOHSZMmydTo+fj4UK5cOdq3b8/FixdRV1eXx58nCP95ShLJJyN6CYIgCIIgFBKiT5AgCIIgCIWSSIIEQRAEQSiURBIkCIIgCEKhJJIgQRAEQRAKJZEECYIgCIJQKIkkSBAEQRCEQkmME/QflZ6eTmBgIHp6ejkajl8QBEHIfxKJhJiYGKysrFBWVlx9RWJiYpaj0H8PdXV16aN0fhQiCfqPCgwMzPTkbUEQBOHHEhAQgI2NjUK2nZiYiJaeCaTGy2V7lpaWvHjx4odKhEQS9B+lp6cHgHrtKSipFpwT8unWfvkdQiYqygWvpqwgjmFaEI+T8ONKSErL7xAKtJiYaMq4OEiv5YqQnJwMqfFolOoOKrkcZTwtmeAHG0lOThZJkJD/PjSBKalqFqgkSF9fP79DyKQgfrmLJEj4r1MVSVC25El3BhV1lHKZBBW8K1b2iCRIEARBEAozJSC3ydYP+htJJEGCIAiCUJgpKWe8cruNH9CPGbUgCIIgCEIuiZogQRAEQSjMlJTk0Bz2Y7aHiSRIEARBEAqzQtwcJpIgQRAEQSjMCnFN0I+ZugmCIAiCIOSSqAkSBEEQhEJNDs1hP2idikiCBEEQBKEwE81hgiAIgiAIhUuhqwk6f/48derUISIiAkNDw1xtq3bt2ri7u+Pt7S2X2PKKirISYztVoW1tF8wNdXgbEce2Mw9ZsPNvJBJQVVFmYpdqNKhQFHtLA6Ljkrhwx59pvpcIDo+Tbqdro9K0qeVCGScz9LU1sO+wiui4JLnEuMT3JEcv3OXfV2/R1FCjopsDk7x+ppi9hbTM4Blb2Hn0msx65UvZc2zdCLnEkJXLt56yfMsZ7jzy5+27aDbN60XTWmWly+f+fpR9p24Q+DYSNTUVyrrYMqFfczxKF1VoTCu2nOHO4wDevovGd24vmtYqI1PmyYtgpq84yOVbT0mXSHBxsGTdrO7YWBorLK4vWexzkhkrD9G3Q23mDG+d5/v/4Le1R5m37pjMPHNjPR4dn51PEUHZFlMICArPNL9nmxrMH90uHyLK/5gWbjjG4o0nZOaZGetx68AMUlLTmPf7Ec5e9cM/MAx9HU1+qlCCcf2aY2lqkC8xQcZjbxZtPM62g1eIjEmgnKsds4a3wdmhiMJiyhVxd9h/z+XLl6lRowYNGjTg+PHj0vnVqlUjKCgIAwPFfUAKuqFtKtC9SRm8Fp/Azz+ccsXMWT6kIdFxSaw5dBttDVXKOJkxf+ff3H/xDkNdDWb3qsW2iT9Td/h26Xa0NNQ4c/MlZ26+ZErXn+Qa45VbT+neugbuJe1IS0tn9urDtB+6kj+3jUdHS0Narm6VkiyZ2Fk6raaqItc4PhefkETp4tZ08qxMt7HrMy13sjNn7si22FubkpiUwqrt52gzeAXX90zG1EgxD0KMT0imVHFrOnpWofu4zDG9eB2KZ19vOjevyujeTdDX1eLJy7doqKspJJ6vufnwFb77LlGqmFWe7zsrLo5F2Ld8oHRaRSV/q/TP+IwkLe3jU5j8ngfSauAKWtQrV6hjcnawZPtiL+m0inLGF25CYjL3n7xmaNeGuBazIjImgalL99Fj7DqOKvDH0NdiAli57Qy/7zzPovGdcLQ1Z6nvSToNW8WFbePR1S44z3KUKsTNYf/ZJGjDhg0MGjSIdevW4e/vj52dHQDq6upYWlp+cb20tDSUlJRQVv4xs9rsqOhShKNXn3Hyn5cABIRE07qWM+WKZ9SyRMcn02ryPpl1xqw9z9lFHbEx0+N1aAwAqw/eAqB6aRu5x7jD20tmesnETpRqOoG7jwKoWq6YdL66uirmJnn3UNb61UpRv1qpLy5v06iCzPTMIb+w9eAVHj4NpGZFZwXF5Er9aq5fXD579RHqV3NlyqAW0nlFrU0VEsvXxMYn0XeSL94TOrJww4lvr5AHVFWUsTAtOA/1/TxR9t50CgcbU6qXL/aFNRSvIMSkoqKc5edcX1dLJhEBmDG0NZ59FvHmbQTWFkZ5HpNEImH9rj8Z9GsDaS3x4gmdKddiIvtP3aBLi+oKi0nIuf/kN31cXBy7du2if//+eHp64uPjI112/vx5lJSUiIyMBMDHxwdDQ0MOHz6Mq6srGhoavHr1im7dutGyZUumTZuGubk5+vr69O3bl+Tk5C/ud8uWLVSoUAE9PT0sLS3p1KkTISEhmfZ95swZKlSogLa2NtWqVePx48cy2zl06BAeHh5oamri6OjItGnTSE1NldvxufowkFpl7XCyMgSgdFFTqpS04tT7pCgr+trqpKdLiIqVT3NXTsXEJgJgqK8tM//yzae4Nh1P1XYzGD5nO6HhMfkRXpaSU1Lx3X8ZfV0tShW3zpcY0tPTOXX5AU525rQdspKSTcbTqMdCjl64m+exjJ63iwbVS1G7kkue7/tLngeE4tp0Au4tptBzwkZevnmX3yFJJaek8sex63RuXiVvniSeDfkV04vX7/BoOZmq7abjNcWXV4Fffp9i4hJQUlJCX1crX2LyDwojJDyaWhU/nuca6qpUcS/GP/dfKjSm7/ahOSy3rx/Qf7ImaOfOnTg7O+Ps7EyXLl0YNGgQkyZN+uKHNj4+njlz5rBu3TpMTEwwNzcH4MyZM2hqanLu3DlevnxJ9+7dMTU1ZdasWVluJzk5mRkzZuDs7ExISAjDhg2jW7duHD16VKbchAkTWLhwIWZmZvTr148ePXpw6dIlAE6cOEGXLl1YunQpNWrU4NmzZ/Tp0weAKVOmfPFvTkpKIinpY4ISHR39xbLeu/9BX1uDa6u6kpaejoqyMjM3X2bPn4+zLK+hpsKUrj+x+8IjYhK+nAQqikQiYfLSfVQu60hJp4/NKHWrutK8bjlsLI3wDwxj7u9HaT1oOac2jsyXpp4PTly8T5+JG4lPTMHCVJ/dywZgYqibL7GERsQSF5/E0k2nGde3GZMH/MzZq350G7uefSsGUr188TyJY8/JG9x5HMAZn1F5sr/s8Chtz8qp/6OYnTkh4dEs3HCCxj0XcXnHBIwNdfI7PI6cv0tUbAIdPavkdyhS+RFTOVd7vCd0xtHWjHcRMSzxPUnL/ks4u2ksRgay71NiUgpzVh+mZf3y6OkortnpazGFhmX8EDM1lq1BMzXS401w5r5VBYJoDvtvWb9+PV26dAGgcePGxMbGcubMGerXr59l+ZSUFFauXEnZsmVl5qurq7Nhwwa0tbUpVaoU06dPZ9SoUcyYMSPL5rIePXpI/+3o6MjSpUupVKkSsbGx6Op+/BKcNWsWtWrVAmDs2LE0a9aMxMRENDU1mTVrFmPHjqVr167S7cyYMYPRo0d/NQmaM2cO06ZNy9bxaVWjBO1qu9B7wTEe+Yfh5mjG7F61CAqPZcdZP5myqirKrB/dFGVlJUauOpet7cvbuAV/4Pc0kINrhsjMb1m/vPTfJZ2scC9ph8cvUzl9+SHNapf9fDN55ieP4pzbPJbwyFg2H7hMr/EbOLFhJGbGiukT9DWS9Iy+HI1rutGvYx0A3ErYcP3uC3z3XcqTJOj12wjGL9rDnqVeaGrkX3L6uQafNGu6YkVFNwc8fpnG9iN/M6Bz3XyMLMOWg1eoX9WVImYFp/9ifsRUt4psU69HqaJU7zCTP45do0+HOtL5KalpDJjqS3q6hNkj2uZbTOVLFQXg85RAIpH8sInCf9mPWX/1FY8fP+batWt06NABAFVVVdq3b8+GDRu+uI66ujplypTJNL9s2bJoa39sfqlatSqxsbEEBARkuZ1bt27RokUL7O3t0dPTo3bt2gD4+/vLlPt0X0WKZNwt8KHZ7MaNG0yfPh1dXV3pq3fv3gQFBREfH//Fv2HcuHFERUVJX1+KEWB69xp4777O3r+e8PBVGDvPPWLlgVsMa1tRppyqijIbxzTF3kKfXybtzZdaoHELd3Pi4n32rBiElfnX2/ctTA2wsTTmeUDIV8spmo6WBo62ZlRwc2DJxM6oqKiw9eCVfInF2FAHVRVlShSV7QdXoqgFr4Mj8iSGO37+hIbHUKfrfMyqDsGs6hAu3XzK2p0XMKs6hLS09DyJ41t0tDQoWcyK5wGh+R0KAUHhXLj+mP+1qJrfoUgVlJi0tTRwcSzCi9cf36eU1DT6TfbBPyic7Yv7K7QW6FsxmZlk/Nj5vGk+LDI2X34IZYtoDvvvWL9+PampqVhbf+yDIZFIUFNTIyIi64u+lpZWjtq3syobFxdHw4YNadiwIVu2bMHMzAx/f38aNWqUqR+RmtrHX8MftpWeni79/7Rp02jVqlWmfWhqfvmDraGhgYaGxheXf0pLQ5V0iey89HQJyp/8XR8SICcrQ5qP30NETGK2ti0vEomE8Qt3c/TCXfatHIS9lck31wmPiiMwJAILk4LzyzmDhKQU+fXpygl1NVXKudrxzP+tzPxnAaHYFsmb2+NrVnTm4vZxMvMGTd9K8aIWDP61PioqBePimZScwpOXb6nq7pTfobD10FXMjPRoWP3LnfDzWkGJKSk5lX9fvaVSGUfgYwL08nUou5YMzNREltcx2RUxwdxYnz+vP6Z0iYybRpJTUrl6+ynj+zXP89iyRUlJDrfI/5i1XP+pJCg1NZVNmzaxcOFCGjZsKLOsdevWbN26ldKlS2d7e3fu3CEhIQEtrYwOdlevXkVXVxcbm8x3Qz169Ih3797x22+/YWtrC8A///yT47+hfPnyPH78mGLFFHfnxfHrLxjeriKvQ6Px8w+njKMZXi3LsfXUQyBjHCHfsc0o62ROh+kHUFFWwtwwo0YsIjaRlNSMhM3cUBtzIx0crTKSjlL2JsQkpPA6NJrIXHagHrvgD/aevIHv3F7oamsSEpbRx0lPRxMtTXXi4pOYv+4YzeqUxcJUn4CgcGavOoSxgU6mMXLkKTY+SeYX6KvAMO49eY2RvjZGBjos3niCxjXcsDA1IDwqjg17/iIwJFKhtxN/HpP/JzHZWBozoHM9ek/0oap7Map7FOfsVT9OXLzP/hWDFBbTp/R0NHF1kr0lXltLHSMDnUzz89KkJftoXKM0NhZGhEbEsnDDCWLiEunYrHK+xQQZP4S2Hb5Kh2aVUFXwkA/ZlZ8xzVhxgPrVSmFtYcS7iBiWbjpFbFwibZtUIjU1jb6TNnLvyWt85/YmLT1deq0w1NdGXU0xX3Ffi0lJSYme7WqyfMspHGzNcLAxY9nmU2hpqNOygYdC4sk1ZaWMV2638QP6TyVBhw8fJiIigp49e2YaB6hNmzasX7+exYsXZ3t7ycnJ9OzZk4kTJ/Lq1SumTJnCwIEDs+wPZGdnh7q6OsuWLaNfv37cv3+fGTNm5PhvmDx5Mp6entja2tK2bVuUlZW5e/cu9+7dY+bMmTneXlbGrDnH+M7VWNC/LqYG2gSHx+Jz/B7zdvwNgJWpHk2rZPwa/mtZF5l1Pcft5tL91wB0b1KGsZ0+dpA8Ojdj4DQv75NsP/MwVzH67L0IwC8DlsnMXzKxMx2aVUZZWQm/54HsOn6N6JgELEz1qV6+OGtndkdXgVXht/38aem1VDo9yTtjKIEOzSqxYEwH/n31lh1HrxEeGYeRgTblStpzaM1QXBwVN0jaHT9/Wn5ynCYtyYipfdNKLJ/chWa1yzJ/TDuW+J5m/OI9ONmZs3FOD6oUgBqP/BQYEknviT6ERcZhaqSLR+minFw/PM9qyL7k/LXHvA6OoHPzgtMUlp8xBYVEMnDaJsKj4jA21KV8KXsOrh6GjaUxAUFhnLx4H4CG3efLrLdr6QCqlVNMn7evxQTg1akeiUkpTFi4m6jYeNxL2rN1Uf+COUZQIackkUgk3y72Y2jevDnp6ekcOXIk07KbN2/i4eHBwoULGTFihHTEaB8fH4YOHSq9Zf6Dbt26ERkZSdmyZVmxYgVJSUl06NCB5cuXS5udPh8xevv27YwfP56goCDKly/PuHHj+Pnnn7l16xbu7u5ZjlZ9+/ZtypUrx4sXLyhatCiQcYfY9OnTuXXrFmpqari4uNCrVy969+6d7WMRHR2NgYEBGvXnoKRacD54b/cNzu8QMlEpgL9gCuLHsiAeJ+HHFZ+Ult8hFGgx0dE4WJsQFRWFvr5ixrKSfk/UmJjr7wlJaiJJf81UaLyK8J9KguTpQxK0f//+/A7lu4gkKPsK4pd7QfxYFsTjJPy4RBL0dXmaBNWcJJ8k6M8ZP1wSVDB6JAqCIAiCIOSx/1SfIEEQBEEQckg8QFX43KeP2hAEQRCE/6xCPGL0j5m6CYIgCIIg5JKoCRIEQRCEwkw0hwmCIAiCUCiJ5jBBEARBEITCRdQECYIgCEJhJprDBEEQBEEolApxc5hIggRBEAShUJNDTdAP2rvmx4xaEARBEAQhl0RN0H/cqx39C9RzXIwrDcrvEDKJuL48v0PIwo9ZtSwUzOe+KRXApgodzYL39RMVn5LfIUilpufheSSawwRBEARBKJSUlOTQMfrHTIJEc5ggCIIgCIWSqAkSBEEQhMKsEN8i/2NGLQiCIAiCfHzoE5TbVzalpqYyceJEHBwc0NLSwtHRkenTp5Oeni4tI5FImDp1KlZWVmhpaVG7dm0ePHggs52kpCQGDRqEqakpOjo6/Pzzz7x+/TpHf7pIggRBEARByDNz585l9erVLF++HD8/P+bNm8f8+fNZtmyZtMy8efNYtGgRy5cv5/r161haWtKgQQNiYmKkZYYOHcq+ffvYsWMHFy9eJDY2Fk9PT9LS0rIdi2gOEwRBEITCLI+bw65cuUKLFi1o1qwZAEWLFmX79u38888/QEYtkLe3NxMmTKBVq1YA+Pr6YmFhwbZt2+jbty9RUVGsX7+ezZs3U79+fQC2bNmCra0tp0+fplGjRtmKRdQECYIgCEJhJsfmsOjoaJlXUlJSpt399NNPnDlzhidPngBw584dLl68SNOmTQF48eIFwcHBNGzYULqOhoYGtWrV4vLlywDcuHGDlJQUmTJWVlaULl1aWiY7RE2QIAiCIAhyYWtrKzM9ZcoUpk6dKjNvzJgxREVF4eLigoqKCmlpacyaNYuOHTsCEBwcDICFhYXMehYWFrx69UpaRl1dHSMjo0xlPqyfHSIJEgRBEITCTI7NYQEBATID9GpoaGQqunPnTrZs2cK2bdsoVaoUt2/fZujQoVhZWdG1a9ePm/yss7VEIvnmwJ/ZKfMpkQQJgiAIQmEmxxGj9fX1v/mUglGjRjF27Fg6dOgAgJubG69evWLOnDl07doVS0tLIKO2p0iRItL1QkJCpLVDlpaWJCcnExERIVMbFBISQrVq1bIdtugTJAiCIAiFmJKSklxe2RUfH4+ysmz6oaKiIr1F3sHBAUtLS06dOiVdnpyczIULF6QJjoeHB2pqajJlgoKCuH//fo6SIFETJAiCIAhCnmnevDmzZs3Czs6OUqVKcevWLRYtWkSPHj2AjKRs6NChzJ49m+LFi1O8eHFmz56NtrY2nTp1AsDAwICePXsyYsQITExMMDY2ZuTIkbi5uUnvFssOkQQJgiAIQiGW05qcL2wk20WXLVvGpEmT8PLyIiQkBCsrK/r27cvkyZOlZUaPHk1CQgJeXl5ERERQuXJlTp48iZ6enrTM4sWLUVVVpV27diQkJFCvXj18fHxQUVHJftiSgvjI4x/Y1KlT2b9/P7dv3/5imW7duhEZGcn+/fsBqF27Nu7u7nh7e8stjujoaAwMDAh+F/ndT5EPDIlk2vIDnL78kMSkFJzszFk6sRPuJe2+O66vPUVeV1uD8f088axdFlMjXe49ec3Yhbu59dBfWmZM76Z0/aU6hnpa3HjwilHzdvLo+cc7AcxN9Jg++BdqV3ZBV1uDp69CWLTxBAfP3v7ifnPzFPlFG09w+Nwd/n31Fk0NNSqVcWTqwBYUL2rx7ZUV5NLNpyzbfJo7j/wJfhfNlvm9aVa7bL7FU1BjWr/7Lzbs+YuAoHAAXBwtGdWzCQ2ql8rVdnNzSS3bYoo0nk/1bFOD+aPbffd2c/sFt+6PP1m25Qxv30Xh4liE2cNbU61csVxt83sp6n2DnD1FPjg0kt/WHOb8334kJqXgYGvGvNEdcHPOuDsqNDyG39Yc4q/rj4mOTaBSWSemDWmFg41ZtrYfEx1NcVtToqKivvsa/i0fvie0WqxASU0rV9uSpCSQcGCAQuNVhALRJ+jy5cuoqKjQuHHjHK87depU3N3d5R+UAi1ZsgQfH5/8DuOrIqPjadJ7MaqqKuxa0p8rOycwY8gvGOjl7oPyNUsmdqJ2ZRf6TfGlesfZnL36iP0rBlHEzACAIb/Wx6tTHUbP30W9bvMJCYtm7/JB6Gp/vPtg9bSuFLM3p9PwNVTvOJtD526zYXYP3ErYKCTmyzef0qttTU5uGMne5QNJTUuj1aDlxCVkHhsjr8QnJFG6hDXzRn3/l6a8FcSYrMwNmTKwBWd9R3HWdxQ1KpSg88i1+D0LyreYzviMxO/oLOlr7/IBALSoVy7fYtp78gbjF+1hRPdGXNgylqruTrQbspKA4MzJWl4oCO9bVEw8rQcuRVVFBZ95fTjlO5aJXi3Q1824PkokEvpMWE9AYBi/z+rJkXUjsbYwosvwVcTn47VByKxAJEEbNmxg0KBBXLx4EX9//2+v8IMzMDDA0NAwv8P4qiWbTmFtbsiKyV3wKFUUOysTalVyzvavmJzS1FDj5zruTF26n8u3nvHi9Tvm/n6UV4Fh9GhdA4B+HetIa178ngXRf+pmtDXVaNOognQ7Fd0c+H3nBW4+fMWrN2Es3HCCqJgEyrrYfmnXubJ72QA6Na9CSaciuJWwYcXkLrwOjuC2X4BC9pcdDaqXYmL/5jSv655vMXyuIMbUpKYbDauXopi9BcXsLZjk9TM62hr8c/9FvsVkaqSHham+9HXi4gMcbEypXj5/al0AVm47S5cWVfm1ZTWcHSyZM6IN1hZGbNj9V77EUxDet1XbzmBlZsiCcR1xL2mPbRFjqnuUwN7aFIAXr0O59fAVM4e3oWxJO5zszJk5rA1xCUkcPHMrz+LMrrzuGF2Q5HsSFBcXx65du+jfvz+enp4yNSQ+Pj6ZkoX9+/dLD7aPjw/Tpk3jzp070jfhw/r+/v60aNECXV1d9PX1adeuHW/fvpVu50MN0oYNG7Czs0NXV5f+/fuTlpbGvHnzsLS0xNzcnFmzZsns/1vb/WDNmjXY2tqira1N27ZtiYyMlC7r1q0bLVu2/OIxSU5OZvTo0VhbW6Ojo0PlypU5f/58to6nvBz76z7uJe3oNnY9JRqNo1aXufjuv6Sw/amqKKOqqkJismx1dEJiClXcnbC3NsHS1ICzVx9JlyWnpHLp5lMqlXGUzrt65xm/NPDAUF8bJSUlWjXwQF1dlYs3/lVY7J+Kjk0EwEhfO0/2J8hHWlo6e07+Q3xCMhXdHPI7HCDj/P7j2HU6N6+Sb18wySmp3H4UQN3KJWXm16lckmt38y9Z/CC/3rfTlx7g5mKL12QfPFpMomnPBWw/dEW6PDk5FQANdTXpPBUVZdRUVbh+73mexZldhTkJyveO0Tt37sTZ2RlnZ2e6dOnCoEGDmDRpUrYOaPv27bl//z7Hjx/n9OnTQEYti0QioWXLlujo6HDhwgVSU1Px8vKiffv2MsnEs2fPOHbsGMePH+fZs2e0adOGFy9eUKJECS5cuMDly5fp0aMH9erVo0qVKtne7tOnT9m1axeHDh0iOjqanj17MmDAALZu3ZqtY9K9e3devnzJjh07sLKyYt++fTRu3Jh79+5RvHjxLNdJSkqSGZ48Ojo6W/v6kldv3rFx70W8OtVhePeG3HzwinEL96ChpkqHZpVzte2sxMYnce3uc0b1bMKTF28JCY+mTaMKVChtz7OAUCxMMtqYQ8NjZNYLCY/B1tJYOt1z3AbWz+nBizPzSElNIyExmf+N+p2Xb97JPebPSSQSJizeQxV3J1yLWSl8f0LuPXj6hkY9FpKYnIqOlgab5/fGxbHIt1fMA0fO3yUqNoGOnlXyLYawyFjS0tIxM9aTmW9mokdIWO6uMbmR3++bf1AYWw5cplfb2nh1qc+dR/5MXboPdTVVWjeuiJO9BdaWRsxbe5jZI9uhpanOul3nCQ2PydfjJmSW70nQ+vXr6dKlCwCNGzcmNjaWM2fOZOsWNy0tLXR1dVFVVZUOrgRw6tQp7t69y4sXL6RDeG/evJlSpUpx/fp1KlasCEB6ejobNmxAT08PV1dX6tSpw+PHjzl69CjKyso4Ozszd+5czp8/T5UqVTh9+nS2tpuYmIivry82Nhn9UJYtW0azZs1YuHChTJxZefbsGdu3b+f169dYWWV8kY4cOZLjx4+zceNGZs+eneV6c+bMYdq0ad88ZtmVni7BvaQdk7x+BqCMsy2PngezYc9FhSRBAH0nb2L55M74HZtFamoadx4HsPvEP5Rx/tiU9XmnUyUlkPBx3oT+zTHU06aF11LCI+NoWqsMPr/1oGlvbx4+C1RI3B+MmreLB08DOfb7MIXuR5Cf4vYW/Ll1HFEx8Rw8exuvqZs5vGZIgUiEthy8Qv2qrtI+cfnp89+kOR2VV97y+32TpEtwc7ZldJ+MB4CWLmHDvy+C2XLgEq0bV0RNVYXV07szet4OynpOQEVFmeoeJaj9WY1aQZHXd4cVJPmaBD1+/Jhr166xd+/ejGBUVWnfvj0bNmzI0X3+n/Pz88PW1lbmGSaurq4YGhri5+cnTVaKFi0qc7udhYUFKioqMoM4WVhYEBISkqPt2tnZSRMggKpVq5Kens7jx4+/mQTdvHkTiURCiRIlZOYnJSVhYmLyxfXGjRvH8OHDpdPR0dGZnuGSExam+jg7yMZaoqgFh87d/u5tfsvLN+/w7LsEbU119HQ0eRsWzfrZ3fEPDOPt+19P5ib60n8DmBnpERqWUTtU1NqUPu1rUbX9TOkdY/f/fUPVck70aluT4b/tUFjso+fv4tif9zi6dijWFkbfXkEoENTVVHG0zejnVs7VnlsP/Vm94zze4zvma1wBQeFcuP6YTXN75WscJoa6qKgoExImWwP7Ljw2U+1QXsrv983cRD/THaBO9hYc+/OudNrN2ZZj60cRHZtASmoaJoa6tOi3WOZHXUEhkqB8sn79elJTU7G2tpbOk0gkqKmpERERgbKycqZf/ikp376F8Uu/Uj6fr6amJrNcSUkpy3kfRrHM7nY/92FZdk6y9PR0VFRUuHHjRqaxDnR1db+4noaGRpbPaPlelcs48vSVbF+np/4h2HzS9KQo8YnJxCcmY6CnRb0qJZmy7ACv3oQR/C6KOpVduPfkNQBqqipUL1+MqcsOAKCtqQ5k1GJ9Ki1NgpKyYj6gEomE0fP/4Mj5OxxaPUTaMVL4MUkkEml/jvy09dBVzIz0aCiH275zQ11NFXcXW879/QjPOh+HNDh/7RFNarrlY2Sy8vp98yjtwHP/EJl5L16HZPkD6MMdYy9eh3LvcQAjejbJkxhzROn9K7fb+AHlWxKUmprKpk2bWLhwIQ0bNpRZ1rp1a7Zu3YqTkxMxMTHExcWho6MDkGn8HXV1ddLS0mTmubq64u/vT0BAgLQ25OHDh0RFRVGy5PdXR2Z3u/7+/gQGBkqbs65cuYKysnKm2p2slCtXjrS0NEJCQqhRo8Z3x5pb/TvVoXHPRSzaeIKW9ctz88ErNu2/zOLxHRS2z7pVSqKkBP++CsHRxozpQ1ry76sQth7M6HC4evs5hndvyLOAEJ4HhDK8WyPiE1PYfeIfAJ68DOaZfwiLx3Vk0pJ9hEfF0ax2GepUdqbDsNUKiXnk3F3sPvEP2xb0QVdbk7fvMmqp9HU10XqflOW12PgkXgSESqdfBYZx7/FrDA20ZfpPFfaYpq84SP1qrthYGBETn8jekze4ePNfdi/1ypd4PkhPT2fb4at0aFYJVdXsD/qmKF6d6tJvyibKudpR0c0B332XeB0cTvfW+XN9KgjvW8+2tWg9YAkrNp+iWR137vj5s/3QVeaM/DgExJFztzE21MXawpBHz4OYtmwfDX9yo2ZFlzyLU/i2fEuCDh8+TEREBD179sTAQLbNu02bNqxfv54zZ86gra3N+PHjGTRoENeuXcs0vk7RokV58eIFt2/fxsbGBj09PerXr0+ZMmXo3Lkz3t7e0g7MtWrVokKFCnyv7G5XU1OTrl27smDBAqKjoxk8eDDt2rX7ZlMYQIkSJejcuTO//vorCxcupFy5crx7946zZ8/i5uZG06ZNvzv+nCjvas/meb2ZvvIg89cfx87KhFnDW9G2cUWF7VNfV5PJA37GytyQiOh4Dp29zcyVh0hNy6iJW7LpNJoa6iwY0x5DPW1uPHhJ60HLiY3P6BCempZOu6GrmDKwBdsX9UVHW4MXAaF4Td3MqcsPFRLzhj0Ztwl79lsiM3/F5C50ap4/HVpv+72ieb+l0ukJizOamzs2q8zKqf8TMb0XGh5DvymbePsuGn1dTUoVs2b3Ui/q5HO/jfPXHvM6OILOzavmaxwftGroQXhUHPPWHePtu2hKOhVhp7cXdkXyJ3ktCO9b2ZJ2rJnZg3lrj7Bk00lsLY2ZPLAlLRt4SMuEhEUzc8UB3kXEYG6iT6tGFRj0a8OvbDX/FObmsHwbMbp58+akp6dz5MiRTMtu3ryJh4cHN27cwN/fn1GjRvH69Wvq16/Pzz//TJ8+faTNZElJSXTu3JkzZ84QGRnJxo0b6datG/7+/gwaNIgzZ86grKxM48aNWbZsmfQJtFmN7Pz5SM6QeTTn7G63b9++zJw5k/DwcJo2bcq6deukT7r91ojRKSkpzJw5k02bNvHmzRtMTEyoWrUq06ZNw80te1XQ8hgxWhG+NmJ0fsnNiNGC8LmCOAj/j3r7cl7LyYjRipaXI0YbtFuLklruhvWQpMQTtavPDzditHhsxn+USIKyTyRBgjwVxEuqSIKyRyRB3+9HTYLy/RZ5QRAEQRDyjxLyGOzwx0y0RRIkCIIgCIVYYe4TlO+PzRAEQRAEQcgPoiZIEARBEAozMU6QIAiCIAiFkhyawySiOUwQBEEQBOHHIWqCBEEQBKEQk0fH6B91GAaRBAmCIAhCISaSIEEQBEEQCqdC3DFa9AkSBEEQBKFQEjVBgiAIglCIieYw4T8rJiEV1FLzOwypgvicrvKTT+Z3CJlcnlQvv0PIpAA+EovUtPT8DiGThJSCF5Oxjlp+h5CJcgH80tRSV8nvEKRS8jCWwpwEieYwQRAEQRAKJVETJAiCIAiFWGGuCRJJkCAIgiAUYoU5CRLNYYIgCIIgFEqiJkgQBEEQCrNCPE6QSIIEQRAEoRATzWGCIAiCIAiFjKgJEgRBEIRCrDDXBIkkSBAEQRAKMZEECYIgCIJQOBXijtGiT5AgCIIgCIWSqAkSBEEQhEJMNIcJgiAIglAoiSRIULiXL1/i4ODArVu3cHd3z9G6tWvXxt3dHW9vb4XEBhAcGslvaw5z/m8/EpNScLA1Y97oDrg52wIwYs429hy/LrOOu6s9+1cNVVhMn1u08QSHz93h31dv0dRQo1IZR6YObEHxohYK26eZngZDGhanWnFTNFRV8A+LY/r+B/gFxQAw9ZdS/FzOWmadewGRdP39GgD6Wqr0q1OMKsVMsNDXJDI+mfOPQlh15hmxSam5js9370V8910kICgcAGeHIgzr0Yh6VV0BWLDuGPtP3yQwJBJ1NRXKONsytm8zypcqmut9Z9eyTaeYs+YwvdrWYvrQVqSkpjF37RHOXnnIq8Aw9HU0qVHRmfH9mmNpZqCwOIJDI5mz+jDn3p/jjrZmzBvTgTLvz3GJRMLijSfYdugKUTEJlHO1Y8aw1jg7FFFYTLHxiSzZeJzTF+8TFhmDazFrxg9oSRkXOwCc643Icr1RfTzp1b6OQmK6fOspK7ac4c7jAN6+i8Z3bi+a1iojXT5w+hZ2Hr0ms45HKXuOr886VkWIiUtkzpojHLlwh3cRsbiVsGH28NaUd7XPk/0v8T3J0Qt3pdeiim4OTPL6mWL2H69Fg2dkPk7lS9lzbF3eHSfh20QSJCfdunXD19dXOm1sbEzFihWZN28eZcqUwdbWlqCgIExNTfMxyqxFxcTTeuBSqroXx2deH0wM9fAPfIe+rpZMuVqVXJg/tqN0Wl1NJU/jvHzzKb3a1qScqz2paWnMXHWIVoOWc3XXRHS0NOS+Pz1NVTb2qsQ/L8IZtPkm4XHJ2BprE5Mom7xc+vcdU/fdl06npKVL/22mp4mZngbeJ57wPCSWIoZajG9eEjM9TUbvvJPrGIuYGzKhf3OK2pgBsOvoNbqPWccpn1E4OxbB0c6M2SPaYG9lQmJSCmt3nqfD0FVc3jUJUyPdXO//W277vWLLwcu4FrOSzktITObe4wCGdmuEazEromISmLJkL93G/M7xDSMVEkdkTDytBiylarnibJrXBxMjPV59do6v2naWdbvOs3BcJxxtzVi66RSdh6/m/NZx6GprKiSuiQt38e+LYOaN64i5iQEHT9+g++g1HF0/GgszAy7+MUWm/J/XHjFhwS4a1SjzhS3mXnxCMqWKW9PRswrdx63PskzdKiVZOqmzdFpdNW+vBUNnb8PvWRCrpv6KpakBfxy/TquBy7m8YwJW5oYK3/+VW0/p3roG7iXtSEtLZ/bqw7QfupI/t42XuRbVrVKSJRM/Hie1PD5O2aWEHGqCftCe0SIJkqPGjRuzceNGAIKDg5k4cSKenp74+/ujoqKCpaXlF9eVSCSkpaWhqpr3b8mqbWewMjNkwbiPCY5tEeNM5dTVVTE30c/L0GTsXjZAZnrF5C4UbziO234BVC9fTO7761bDgbfRiUzd/0A6LygyMVO55NR0wmKTs9zGs5BYRn2S7LyOSGDFmafMbO2GirISaemSXMXY8KfSMtPj+nmyad8lbjx4ibNjEVo1rCCzfOrgX9h26Cp+z95Qo4Jzrvb9LXHxSQyctpn5YzqwxPekdL6+rhY7l8i+lzOHt6Zpr0W8Dg7HxjLzuZdbq7aeoYi5IQu/cI5LJBLW/3GBgf9rQJP3tR6LxnfCo+Uk9p+6SZcW1eQeU2JSCif/vMfKGd2pWMYJgEFdG3H60n22HbrMsB5NMDOW/byduXSfyu5O2FqZyD2eD+pXc6V+NdevltFQV8Uin64FCYnJHDp3hy3zelOtXMbnfkzvphy9cJeNey8yoZ+nwmPY4e0lM71kYidKNZ3A3UcBVC338VqU39fM7CrMzWHi7jA50tDQwNLSEktLS9zd3RkzZgwBAQGEhoby8uVLlJSUuH37NgDnz59HSUmJEydOUKFCBTQ0NPjrr7+Ii4vj119/RVdXlyJFirBw4UKFx3360gPcXGzxmuyDR4tJNO25gO2HrmQqd/X2UzxaTKJO59mMnbeTdxExCo/ta6JjMxISI31thWy/lrMZD99EM7ddGU6Prs22/lX4xcM6U7kKRY04Pbo2+wZXZ+LPrhjpqH91u7oaqsQlpeY6AfpcWlo6+0/dJD4xCY/SDpmWJ6eksuXAZfR1tXAtlvnvkLfxC/+gXlVXalb8drIVHZuIkpISBnqKeS9PXXpAGWdb+k32odzPk2jScwHbPjnH/YPCCA2PkYlVQ12VymWLceP+C4XElJqWRlp6Ohrqsj98NNXVuJnFPt+Fx3Dhbz/aNKmskHhy4tLNp5RsMp7KbWcwbPZ2QsPz7lqQmpZOWlo6GhpqMvM1NdT4+86zPIvjUzHvr0WGn12LLt98imvT8VRtN4Phc/L2OAnZI2qCFCQ2NpatW7dSrFgxTExMiIuLy7Lc6NGjWbBgAY6OjhgaGjJq1CjOnTvHvn37sLS0ZPz48dy4ceOb/YiSkpJISkqSTkdHR2c7Vv+gMLYcuEyvtrXx6lKfO4/8mbp0H+pqqrRuXBGA2pVL0qx2WawtjAkICmPhhmN0GraSQ2tHZLqI5wWJRMKExXuo4u4k09QiT9ZGWrSpaMPWK6/Y8OcLStsYMKqpC8mp6Ry5EwTA5X/fcfrBW4IiE7E20qJ/XSfWdKtA59VXSEnLnOQYaKnRu7Yje/55Lbc4/Z4F4tlnMUnJqehoabBhTk+cHT7WOp66dJ9+k31JSEzBwkSfnd79MTFUbFPY/tM3uffkNUez0f8hMSmF2asO8UuD8ujpKKbZKeDDOd6uNgO71Oe2nz9TlmSc420aVyQ0LOPLydRYT2Y9U2Nd3gRHKCQmXW1Nyrnas3LLaRztLDA10uPw2VvceeSPvXXmZvN9J6+jo61BwxpuCoknu+pVdeXneuWwtTTCPzCMOWuP0mrgck77jERDXe3bG8glPR1NKro5sHDDcUoUtcTcWI89J29w48ErHG3NFL7/z0kkEiYv3Uflso6UdPp4Lapb1ZXmdcth8/44zf39KK0HLefUxrw5TjlSiMcJEkmQHB0+fBhd3Ywvl7i4OIoUKcLhw4dRVv5yhdv06dNp0KABkJE4rV+/nk2bNknn+fr6YmNj8819z5kzh2nTpn1X3JJ0CW7Otozu0wyA0iVs+PdFMFsOXJImQc3rlpOWd3YsQhkXW6q3m8G5qw9pXFNx/RO+ZNS8XTx4Gsix34cpbB/KSko8DIxm+emnADwOjsHRXIe2lWylSdDJ+2+l5Z+FxPLwTRRHhtekRgkzzvqFyGxPR0OFpV3K8Tw0jrXn5PeL1cnOnNO+o4mKSeDI+TsMnrmVvSsGSxOh6uWLc9p3NOGRcWw9eJk+k3w4+vvwTF/48vLmbQSTvfewfbEXmhpfv9inpKbRf4ov6RIJc0a2U0g8AOnpEso42zLmk3P8ycuMc7zN+3McMl/HJRLFVvPPG9eJ8fN3UrP9dFSUlXEtbo1n3XI8/PdNprJ7jl+jeb3y+f4F+kuD8tJ/l3SyomxJO8q3nMqpSw/xrFM2T2JYNfV/DJ65jdKeE1FRUaaMsw2tG3lw95H8flxk17gFf+D3NJCDa4bIzG9ZX/Y4uZe0w+OXqZy+/JBmtfPmOGWXaA4T5KJOnTrcvn2b27dv8/fff9OwYUOaNGnCq1evvrhOhQof+2w8e/aM5ORkqlatKp1nbGyMs/O3mxPGjRtHVFSU9BUQEJDtuM1N9DPdYeVkb0FgSORX1jHA2sKIF69Ds70feRk9fxfH/rzHoVWDsbYwUth+3sUm8Tw0Vmbei9A4LA2+XFvxLjaZoKgEbE1kq8W11VVY/j8P4pPTGLH9NqlybApTV1PFwcYM95J2TOjfnFLFrFm368LHfWtp4GBjhkfpoiwa3wlVFWW2Hb4qt/1/7u7jAN5FxNK45wJsaw7DtuYwrtx6yvrdf2Jbcxhp7zuOp6Sm0XfSRgKCwtjh7aWwWiDI+hwvbm/Bm7eRAJiZZCSEnzdXhEXEKrQDuZ2VKVsWD+DW4dmc3zGJ3SuHkpqWhs1nffL+ufucFwGhtG1aRWGxfC9LUwNsLI15HhDy7cJy4mBjxqHVQ/A/v4C7B6dzeuMoUlPTsLeSf3+yrxm3cDcnLt5nz4pBWJl//VpkkQ/HSfg2URMkRzo6OhQr9rFTnIeHBwYGBvz+++/06tXri+t8IJF8/xejhoYGGhrfd4eUR2kHnvvLfjBfvA75aoIRERVHYGgk5sZ51+lPIpEwev4fHDl/h0Orh2TZZCBPt/0jKWqqIzPP3kQny87RHxhoqWGhr8m7mI9NkzoaKqz41YPk1HSGbbtFcmr6F9eXB4lEQnLKl2+/l0ggOTn3t+d/SQ2PEpzdPEZm3rBZ2yhmb8GALvVQUVGWJkAvAkLZvWwQxgY6X9iafFRwc+DZZ18+zwNCsHl/jtsVMcHMWI+//nlM6RIZNa/JKan8fecpY/s2V2hskJGoamtpEBUTz8XrjxnVR7Zz7+5jf1OqhA0uTopp+s2N8Kg4AkMisDBV3PAGX6KjpYGOlgaR0fGcvfqIqQNb5Ml+JRIJ4xfu5uiFu+xbOQj7bHRUlx4nk7w/Tt9SmGuCRBKkQEpKSigrK5OQkJCt8sWKFUNNTY2rV69iZ5cxTkhERARPnjyhVq1aCouzZ9tatB6whBWbT9Gsjjt3/PzZfuiqtHkiLj4Jb5/jNK5ZFnMTfV4HhzP/9yMYG+jQqGbe9U8YOXcXu0/8w7YFfdDV1uTtu4x+T/q6mmhpfr0z8vfYevkVG3tXokdNB07dD6aUtQGtKtgw82DG3WJa6ir0rePE2YdvCY1JwspQi4H1ixMZn8K5901h2uoqrPzVA001FSbuvoeOhio673PViLhkclshNHv1IepWccXawpDY+CT2n7rJ5VtP2baoH/EJSXj7nqTRT26Ym+gTER2H796LBIVG0ryue+52/BW6Opq4OMp+WWtraWCkr4OLoxWpqWn0nrCBe09es2leH9LS0wkJy3gvDfW1UVeT/2WpV9ta/OK1hOWbT+FZx53bfv5sO3SV396f40pKSvRsW4sVW07jYGOGg40Zy7ecRlNDnZafNP/I21/XHyGRgIOtGf5v3jFv7WEcbM1p1biStExsXCLH/7zLmH6KT8YAYuOTZGp4/QPDuPfkNUb62hjq6zB/3TE865TFwkSfgKBwZq0+hLGBDs1q5V2z+NmrfkgkEorZm/M84B1Tl+2nmL05nZrnTU3Z2AV/sPfkDXzn9kJXW1N6/urpZFyL4uKTmL/uGM3qlMXCNOM4zV6VcZya5uFxyi4lpYxXbrfxIxJJkBwlJSURHBwMZCQvy5cvJzY2lubNs3fx0tXVpWfPnowaNQoTExMsLCyYMGHCV/sUyUPZknasmdmDeWuPsGTTSWwtjZk8sCUtG3gAoKKixKPnQew98Q/RsQmYm+hTpVwxlk/9VWHjp2Rlw56/APDst0Rm/orJXRRy8XsYGM3I7bcZ2KA4vWs5EhiZwIJjjzh2N+M9Tk+XUNxCF8+yVuhpqvIuNonrL8IZu+sO8clpAJS00sfN1hCAg8NqyGy/2aI/v1qrlB3vwmMYNH0LIWFR6Olo4VrMim2L+lGrkguJSSk8fRXCH0c3EB4Vi5GBDu4uduxfORhnR8UNAPgtQaGRnLyYMa5Sg27zZJbtXjaQauWLy32fZUvasXZWD+auOcIS34xzfMqglvzS0ENapn+nuiQmpTBh0W6iYxNwL2nP1oX9FHqOx8QlsmjdUYLfRWKop03DGmUY1qOJzHgyR87dQiKR4Fmn3Fe2JD93/PxpOWCZdHrSkn0AtG9aifmj2/HwWSC7jl0jKiYBC1N9qpcvzu8zu6OrwObMz0XHJjBj5SECQyIx0tfGs05ZJvZvnmfj8PjsvQjAL58cJ4AlEzvToVlllJWV8HseyK7j14j+5DitzePjlF0ZSVBua4LkFEweU5Lkpg1GkPp8sEQ9PT1cXFwYM2YMrVu3zjRi9Pnz56lTpw4REREYGhpK14uNjaV///7s3bsXPT09RowYwZEjR3I8YnR0dDQGBgb8G/AOPf2CM06FgXYBuysCKD/55LcL5bHLk+rldwiZFMQrRWqaYpsWv0dCSsGLyVin4H3ulAvgt6Y8++rlVnR0NLYWRkRFRaGvoGv4h+8Jx0G7UdbIXZN0elIcz5e1UWi8iiCSoP8okQRln0iCsqcgXilEEpQ9IgnKnkKbBA3ejUouk6C0pDieL/3xkiDRHCYIgiAIhVhh7hgtbpEXBEEQBKFQEjVBgiAIglCIibvDBEEQBEEolJSVlVBWzl0WI8nl+vlFNIcJgiAIglAoiZogQRAEQSjERHOYIAiCIAiFkrg7TBAEQRAEoZARNUGCIAiCUIiJ5jBBEARBEAqlwtwcJpIgQRAEQSjERBIk/Gdpa6igo5E3T1bOjoL4qLqrk+vndwiZ9Nh2K79DyGRdR/f8DiGTJ8Gx+R1CJk7muXsGkyKkphW8z52aasH70kwvQM8OK0ix/JeJJEgQBEEQCjHRJ0gQBEEQhEJJCTk0h/FjZkHiFnlBEARBEAolURMkCIIgCIWYaA4TBEEQBKFQKsx3h4nmMEEQBEEQCiVREyQIgiAIhZhoDhMEQRAEoVASzWGCIAiCIAiFjKgJEgRBEIRCrDA3h4maIEEQBEEoxD40h+X2lRNv3ryhS5cumJiYoK2tjbu7Ozdu3JAul0gkTJ06FSsrK7S0tKhduzYPHjyQ2UZSUhKDBg3C1NQUHR0dfv75Z16/fp2jOEQSJAiCIAiFmdLH2qDvfeVkwOiIiAiqV6+Ompoax44d4+HDhyxcuBBDQ0NpmXnz5rFo0SKWL1/O9evXsbS0pEGDBsTExEjLDB06lH379rFjxw4uXrxIbGwsnp6epKWlZTsW0RwmCIIgCEKemTt3Lra2tmzcuFE6r2jRotJ/SyQSvL29mTBhAq1atQLA19cXCwsLtm3bRt++fYmKimL9+vVs3ryZ+vUzHoK9ZcsWbG1tOX36NI0aNcpWLCIJEvD2PcmR83f599VbtDTUqOjmwOQBP1PM3kJa5vC5O/juv8TdRwGER8VxdtNo3ErY5GmcZVtMISAoPNP8nm1qMH90O4Xvf4nvSY5eyDhOmu+P0yQv2eM0eMYWdh69JrNe+VL2HFs3Qi4xtCpbhFZlrWTmRSakMPCPuwBUsDOkbglTHIx10NNUZfyhh/hHJMiUN9BUpaOHDaWt9NFUVSY4OokD94K47h8plxh9917Ed99F6Xvl7FCEYT0aUa+qKympacxdc4QzVx7yKjAMfV1NalRwZkL/5liaGchl/wDb9l3g4jU/At6EoqGuhmsJW3p3aYitldnHOHed5fzle4SGRaGqqkJxRyt6dKhPyeK2mbYnkUgYP2cz12//y7SRHaleyTXXMf7UfgZv3kZkmt+lZXVmDG0tM2/8wl1sP3SVSQNa0KNtrVzv+0t892Xx3nXPeO8AilQfkuV6k7x+xqtzPYXFdfnWU5ZvOcOdR/68fRfNpnm9aFqrrHT53N+Psu/UDQLfRqKmpkJZF1sm9GuOR+miConnW8cpNDyamSsPceHaI6JiE6ji7sSsYa1xtDVXSDy5Jc+7w6Kjo2Xma2hooKGhITPv4MGDNGrUiLZt23LhwgWsra3x8vKid+/eALx48YLg4GAaNmwos51atWpx+fJl+vbty40bN0hJSZEpY2VlRenSpbl8+bJIggqK4OBgZs2axZEjR3jz5g3m5ua4u7szdOhQ6tX79kXDx8eHoUOHEhkZqbAYL996So/WNSjnakdqWjqzVx+m7ZCVXNw+Hh2tjJM3PjGJymUc+LmuO8Pn7FBYLF9zxmckaWkS6bTf80BaDVxBi3rl8mT/V249pXvrGriXtCPt/XFqP3Qlf277eJwA6lYpyZKJnaXTaqoqco0jICKB3049kU6nfzwkaKgq8yQkjmsvI+hVrWiW6/f7yQFtdRUWnX1KTFIq1RyMGVTTkUlH/XgVnpDlOjlRxNyQCf2bU9QmI+HYdfQa3ces45TPKIqYG3LvSQDDujfCtZgVUTEJTF6yl65jfufEhpG53vcHdx++pEWjSjg7WZOWls6GHacZM9OX9YsGo6WpDoCNlQkDe3hSxMKI5OQU9hy5wpiZvmxaNgxDfR2Z7e05ckXuHT8PrBlGelq6dPrxi2D+N3I1zT75cgc4+dc9bj/0x8JUX74BZKGImSET+n3y3h27Rvex6zi1cRTOjkW4c3CGTPmzVx8yfM4OmtUum9Xm5CY+IYnSxa3p5FmZbmPXZ1ruZGfO3JFtsbc2JTEphVXbz9Fm8Aqu75mMqZGe3OP52nEq4WBJ97HrUVVVwWduL3S1NVmz8zzthqzkz63j0NbS+MbW8548O0bb2sr+iJgyZQpTp06Vmff8+XNWrVrF8OHDGT9+PNeuXWPw4MFoaGjw66+/EhwcDICFhYXMehYWFrx69QrI+G5VV1fHyMgoU5kP62eHSIIU6OXLl1SvXh1DQ0PmzZtHmTJlSElJ4cSJEwwYMIBHjx7ld4gA7PL2kpleOrETJZtM4M6jAKqVKwZAuyaVAPAPDMvz+D74/GLmvekUDjamVC9fLE/2v+Oz47RkYidKNZ3A3UcBVC33MQZ1dVXMTRT3hZUukRCVmJrlskvPM36Zmuqof3H94mY6bPzbn+dh8QAcuBdMY1cLihpryyUJavhTaZnpcf082bTvEjcevKSTY1V2Lhkgs3zWsNY06bWI18Hh2Fga53r/AL9N6CozPcqrFW16/ca/zwMp41oUgHo/yX5x9/u1McfO3uD5q2DKuzlJ5z97GcSeI5dYMacf7frMk0t8ACaGujLTq7adwd7KhMruH/cdHBrJlCV78Z3flx5jf5fbvr8k03vX9+N75+xYJNN5ffyv+1QvXwx7a1OFxlW/WinqVyv1xeVtGlWQmZ455Be2HrzCw6eB1KzoLPd4vnacVFVVuPHgJec3j8XZsQgAv41oi5vnBPaduknnn6vKPZ6CJCAgAH39j+fJ57VAAOnp6VSoUIHZs2cDUK5cOR48eMCqVav49ddfpeU+r52SSCTfrLHKTplPiY7RCuTl5YWSkhLXrl2jTZs2lChRglKlSjF8+HCuXr0KwKJFi3Bzc0NHRwdbW1u8vLyIjY0F4Pz583Tv3p2oqChpdeXnGbUiRMcmAmCkr63wfX2v5JRU/jh2nc7Nq+TbIF0x74+T4WfH6fLNp7g2HU/VdjMYPmc7oeExWa3+3Sz0NFjWxo1Fv5RmQA0HzHS/nPBk5UlILFWKGqGjroISUKWoEWrKSvgFyzdOgLS0dPafukl8YhIepR2yLBMdl4iSkhIGeoo73+LiM94rPV2tLJenpKZy5PQ/6Ghr4mRvKZ2fmJTMrCV/MLCHJ8aG8q9R+CA5JZX9p27Stmll6fmcnp7O8Nnb6NOhDiUcLL+xBflLS0tn/+kvv3eh4dGcufyAjp5V8jy2r0lOScV3/2X0dbUoVdxa4fv7/Dglp2T8QNFQV5OWUVFRRk1NlWt3nys8nu8hz7vD9PX1ZV5ZJUFFihTB1VW2SblkyZL4+/sDYGmZcb5/XqMTEhIirR2ytLQkOTmZiIiIL5bJDlETpCDh4eEcP36cWbNmoaOjk2n5h17wysrKLF26lKJFi/LixQu8vLwYPXo0K1eupFq1anh7ezN58mQeP34MgK6ubqZtQcatgklJSdLpz9tls0sikTB5yT4ql3WkpJPVt1fIJ0fO3yUqNiHfLsASiYTJSzMfp7pVXWletxw2lkb4B4Yx9/ejtB60nFMbR8pcFL/X09A41lx6SVB0IgZaarR0K8KUJi6MPfiA2KTs3RGx7M/nDKrpyJoO7qSmS0hOTcf7/DNCYpNzHd8Hfs8C8eyzmKTkVHS0NNgwpyfOWXyRJyalMGvVIX5pUB49HU257f9TEomE1b7HKO1ij4Od7MXx6o3HzPTeRVJyCsaGusyd2BWDT5rCVvkeo5SzHdUrllRIbB+cvHif6NgE2jSuKJ23evtZVFSU6da6hkL3/Tm/Z4F49v3kvZud9Xu369h1dLU1Zfrm5KcTF+/TZ+JG4hNTsDDVZ/eyAZlq2+TpS8cpJTUNG0tjZq85xLxR7dHWUmfNjnOEhEXzNuz7rsuKltfjBFWvXl36nfbBkydPsLe3B8DBwQFLS0tOnTpFuXIZ3R2Sk5O5cOECc+fOBcDDwwM1NTVOnTpFu3YZfUKDgoK4f/8+8+Zlv8ZWJEEK8vTpUyQSCS4uLl8tN3ToUOm/HRwcmDFjBv3792flypWoq6tjYGCAkpKSNDP+kjlz5jBt2rRcxz1mwR88fBrI4bVZd4AsKLYcvEL9qq4UkWNn2pwYt+AP/J4GcnCN7HFqWb+89N8lnaxwL2mHxy9TOX35oVz6TdwN/HgRfR2ZyNPQOBb+UpoajiYc8wvJ1jbalrNGW12VOSefEJOUioetIYNqOTLj+GNeRybmOkbI6KNx2nc0UTEJHDl/h8Ezt7J3xWCZL9OU1DT6TfYlPV3Cb6MU17F92frDPPd/i/f0XpmWlS3lwJr5XkRFx3P0zD/MXLyTZbP7YmSgy+V//Lh9/zmr53llsVX52nX0b2pVdsHCNON8vvc4gI27/+Lw78PzvKbTyc6c0z6fvHeztrJ3+eBMidD2w1dp1dADTY3cJ/fy8JNHcc5tHkt4ZCybD1ym1/gNnNgwEjNjxdTgfe04rZvVgxFztlOyyThUVJSpUaEEdasoNpH+kQwbNoxq1aoxe/Zs2rVrx7Vr11i7di1r164FMmqmhg4dyuzZsylevDjFixdn9uzZaGtr06lTJwAMDAzo2bMnI0aMwMTEBGNjY0aOHImbm5v0brHsEEmQgkgkGb1Vv3UBO3fuHLNnz+bhw4dER0eTmppKYmIicXFxWdYgfcm4ceMYPny4dDo6OjpTB7VvGbtgNyf+us/B1UOwMjf69gr5JCAonAvXH7NpbuYvtbwwbuFuTly8z/5V3z5OFqYG2Fga8zwgewlKTiWlphMQkYCFfvZqUcx11WnoYs6YAw94E5WR8PhHJOBsoUsDZ3M2/u0vl7jU1VRxeN9p1L2kHXf8/Fm36wLzx7QHMhKgPhM3EhAUxh/LBiqsFmjZhsNcufGIRdN6YWaSOWHW0lTH2tIEa0sTXEvY0nXwYo6dvUGnX2px+/4LAt9G0KLbbJl1pi3cQemS9iya2lMuMb4ODufSjSesmt5dOu/63eeERcZSvd3Hjshp6enMWnWQDbv/5OLOSXLZd1YyvXeP/Fn3xwXmj24vLXP19jOe+YewZno3hcWRUzpaGjjamuFoa0YFNwcqtp7O1oNXGNqt4bdX/g5fO05lXWw57Tua6NgEklPSMDXSpWnvRZR1ydk1Oa/k9bPDKlasyL59+xg3bhzTp0/HwcEBb29vOnf+eEPJ6NGjSUhIwMvLi4iICCpXrszJkyfR0/uY1C5evBhVVVXatWtHQkIC9erVw8fHBxWV7N+MIpIgBSlevDhKSkr4+fnRsmXLLMu8evWKpk2b0q9fP2bMmIGxsTEXL16kZ8+epKSk5Gh/Wd2GmF0SiYSxC3dz9MJd9q8YhL2VyXdtJ69sPXQVMyM9Glb/ckdJRZBIJIx/f5z2rczecQqPiiMwJAKLLL6A5UFVWQlrA00eh8Rmq7y6akY3QMln89MlEoUOey+RSKR9JT4kQC8CQtm9fBDGBtlP9nOyv+UbjnDx2kMWTu1JkWwm9RIJpKRkNCt2aFmDJnU9ZJb3Hrmc/l2bUKXC12t4c2L3sWuYGOrK1BT80rAC1T1KyJTrOnoNvzSoQJv3NynkFYlEQnKybEf87YevUsbZNk/63Hw/CUkpWd9AoJC9ZXGc9N/3QXseEMKdR/6M7tU0z+LJifx4gKqnpyeenp5f3d7UqVO/2g9WU1OTZcuWsWzZshzt+1MiCVIQY2NjGjVqxIoVKxg8eHCmWp3IyEj++ecfUlNTWbhwIcrKGV9Ou3btkimnrq6eo9Evv8eY+X+w5+QNNs3rha6OprTdWl9HU3o7cURUHK/fRhD8LgqAp68yajbMTfSxUOCdUJ9LT09n2+GrdGhWCVU533r+LWMX/MHekzfwfX/ba8j746T3/jjFxScxf90xmtUpi4WpPgFB4cxedQhjAx2a1iojlxg6elhz63UUYXHJ6Guq0sKtCFpqKvz1LOOuPR11FUx01DHSzmiiKGKQUcMSlZBCVGIqQVGJBEcn0qOKHdv+eU1sUioedoaULqLPwrNP5RLj7NWHqFvFFWsLQ2Ljk9h/6iaXbz1l26J+pKam0Xv8Bu49ec2m+X1IT0+XHkdDfW3U1eRzSVq6/jBnL95l+uhOaGupEx6Z0elbR1sTDXU1EhKT2bb3AlUruGBipEd0TDwHT14jNDyaWlUzkmtjQ70sO0ObmxpkO6n6lvT0dP44fp3WjSrKnM9GBjoYfZYcqqqoYGash5Od4saayfTenX7/3i3sJy0TE5fIoXO3mTKwhcLi+FxsfBIvXodKp18FhnHvyWuM9LUxMtBh8cYTNK7hhoWpAeFRcWzY8xeBIZEKGz7jW8fp0NlbmBjqYm1hhN/zICZ576VxDTdqV5Zf8izIh0iCFOhD5+ZKlSoxffp0ypQpQ2pqKqdOnWLVqlVs376d1NRUli1bRvPmzbl06RKrV6+W2UbRokWJjY3lzJkzlC1bFm1tbbS15XsXzca9FwFo6SWbTS+d2JmOnpWBjFthB8/cKl3WZ5IPAKN6NmZ077z7dXP+2mNeB0fQuXne32bq8/44/TJA9jgtmdiZDs0qo6yshN/zQHYdv0Z0TAIWpvpUL1+ctTO7oyun5h5jbXUG1HBAT0OV6KRUnobGMeXYI8LiMjo1l7c1pG/1otLyg2o6ArD3TiB77wSRJoH5Z57Svrw1I+oWQ0NVmbcxSay59JI7b+TTafNdeAyDpm8hJCwKPR0tXItZsW1RP2pVciEgKIwTF+8DUL+rbOfFPcsHUq18cbnEcOhkxoCVI6ZukJk/yusXGtUuj4qyEgGBoZxceIvomHj09bQp4WTN4mk9KWqb/TtLcuvijX8JfBtB26Z5W7vzJe8iYhg047P3bmHGe/fB/tM3kUgk/NLA4ytbkq/bfv609FoqnZ7kvQ+ADs0qsWBMB/599ZYdR68RHhmHkYE25Urac2jNUFze36Iub986Tm/Dopm6bD+h4TGYm+jTtnFFhnXP3uB9+aEwP0BVSfKh84qgEEFBQcyaNYvDhw8TFBSEmZkZHh4eDBs2jNq1a7N48WLmz59PZGQkNWvWpHPnzvz6669ERERI7yDr378/f/zxB2FhYVkOPJWV6OhoDAwMeBMSITNmQ35TUS54n5SUtIL3Eeix7VZ+h5DJuo7u+R1CJg9eF7y7bZzM5d+8l1uaanlba5odaqoFb4SWlNT0bxfKI9HR0dgXMSYqKkph1/AP3xPV55xEVTN3521qYhyXxjVUaLyKIJKg/yiRBGWfSIKyRyRB2SOSoOwRSdDX5WUS9NNv8kmCLo798ZKggncWCoIgCIIg5AHRJ0gQBEEQCrH8uDusoBBJkCAIgiAUYkrIoWO0XCLJe6I5TBAEQRCEQknUBAmCIAhCIaaspIRyLquCcrt+fhFJkCAIgiAUYoV5nCDRHCYIgiAIQqEkaoIEQRAEoRATd4cJgiAIglAoKStlvHK7jR+RaA4TBEEQBKFQEjVBgiAIglCYKcmhOesHrQkSSZCQpwpiu7FEUnCeF/TBug7u+R1CJu7jjuV3CJn8M7NxfoeQScE7wyE2KTW/Q8jESFU9v0PIRFWl4Lx7eRlLYb47TCRBgiAIglCIKb3/L7fb+BGJPkGCIAiCIBRKoiZIEARBEAqxwnx3mEiCBEEQBKEQK8zjBInmMEEQBEEQCqVs1QQtXbo02xscPHjwdwcjCIIgCELeEneHfcPixYuztTElJSWRBAmCIAjCD0Q8Rf4bXrx4oeg4BEEQBEEQ8tR39wlKTk7m8ePHpKYWvEG4BEEQBEHIng/NYbl9/YhynATFx8fTs2dPtLW1KVWqFP7+/kBGX6DffvtN7gEKgiAIgqA4H+4Oy+3rR5TjJGjcuHHcuXOH8+fPo6mpKZ1fv359du7cKdfgBEEQBEEQFCXH4wTt37+fnTt3UqVKFZnMz9XVlWfPnsk1OEEQBEEQFEvcHZYDoaGhmJubZ5ofFxf3w1aHCYIgCEJhJe4Oy4GKFSty5MgRBg0aBHwcJfL333+natWq8o1OyDOXbz1lxZYz3HkcwNt30fjO7UXTWmWky0PCopm+4iDnrz0iOiaBKuWcmDO8DU52mRNiRVm/+y827PmLgKBwAFwcLRnVswkNqpfKk/0v3XSKI+fv8NQ/BE11NSq6OTDRqznF7C2kZULDo5mx8hAXPhwndydmDW+No61ijpPvvov47rsoPSbODkUY1r0R9aq6Sss8eRnMrJWHuHL7KenpEpwdLFkzoxs2lsZyi8NcX5ORzVyo6WKOhpoKL0NjmbjrLg/eRAGgra7CiGYlqVfKAkMddd6Ex7P54kt2XHkl3cam/lWp5GQis90jt94wYuutXMe3aMMxFm88ITPPzFiPmwdmZCo7dv5Oth68wpRBLenVrnau9/0lC78Q0633MR29cIetBy5z98lrIqLiOLFhJKWK2ygsng9i4xPx3nCcUxfvExYZg2sxayYObEkZFzsAJBIJy3xPsvPIVaJi4ilb0p6pg1tR3MFSYTFdvvWU5VvOcOeRP2/fRbNpXi+a1iorXT7396PsO3WDwLeRqKmpUNbFlgn9muNRuqhC4vH2PcmR83f599VbtDQyrgWTB/wscy2QSCTMX3eMTQcuExWTQHlXe+aOaouLYxGFxJQbSu9fud3GjyjHSdCcOXNo3LgxDx8+JDU1lSVLlvDgwQOuXLnChQsXFBFjgdOtWzd8fX0BUFVVxdjYmDJlytCxY0e6deuGsvKPNxB3fEIypYpb09GzCt3HrZdZJpFI6DpmHaqqKmye1xs9HU1WbT9Hm8EruLh9PDpaGnkSo5W5IVMGtsDRxhSA7Uf+pvPItVzYMpaSToq/sFy59ZTurWvgXtKOtLR05qw5TPuhq/hz2zh0tDSQSCR0G7MeNVUVfH7rhZ6OJmt2nKft4JXSMvJWxMyQCf2aU9TGDIBdx67Rfew6Tm0chbNjEV6+fkfL/kvo6FmFkb2aoK+jyb+v3qKpoSa3GPS11Ng+sBp/Pwuj97prhMcmYWuiTXRiirTM2J9LUbmYCaO33+ZNeDzVS5gxuVVpQqITOfvgrbTcrquvWHriiXQ6MSVNbnGWcLBk+2Iv6bRKFp/T43/e5dbDV1iYGshtv1/j/JWY4hOSqeDmQLM67oyel3f9LScs2MWTF8HMH9cRC1MDDpy6QddRazi2YTSWZgas3XGODbsvMHd0BxxszVi55TTdRq/hhO8YdLU1v72D7xCfkETp4tZ08qxMt7HrMy13sjNn7si22FubkpiUIr0+Xd8zGVMjPbnHc/nWU3q0rkE5VztS09KZvfowbYeslLkeLtt8mlXbz7FsUhec7MxYtPEkbQav4OrOiejqKOY4CTmX42/ratWqcenSJeLj43FycuLkyZNYWFhw5coVPDw8FBFjgdS4cWOCgoJ4+fIlx44do06dOgwZMgRPT0+FDhuQkpLy7ULfoX41V8b388SzTtlMy54HhPLP/ZfMH92Ocq72FLO3YN6odsTFJ7H35A2FxJOVJjXdaFi9FMXsLShmb8Ekr5/R0dbgn/t5M47V9sX96dCsMi6ORShV3BrvCZ158zaCu48CgIzjdOPBS34b1VZ6nH4b2Zb4hCT2n7qpkJga/lSaetVK4WRnjpOdOeP6eqKjpcGNBy8B+G3tYepWdWXSgBa4lbDB3tqU+tVKyfWLoVcdJ4IiExi/8w73AiJ5E5HA1adhBITFS8u4FzVk/z+vufYsjDcRCez625/HQdGUtpFNNhKS03gXkyR9xSbK77OkqqKMuYm+9GVipCuzPCg0kknee1g6+X+oqebNDxmVr8TUpnFFhnVvTI0KJfIkFoDEpBRO/HmP0X09qVTWCXtrUwZ3a4SNpTHbDl5GIpHgu+dP+neuT6OaZSjhUIS5YzqSkJjMoTO5r7H7kvrVSr2/PrlnubxNowrUquRCUWtTXByLMHPIL8TEJfLwaaBC4tnl7UVHz4xrQeni1iyd2InXwRHceX8tkEgkrNl5gWHdGuJZpywlnaxYPrkzCYkp7MnDa2Z2ibvDcsjNzQ1fX1/u37/Pw4cP2bJlC25ubvKOrUDT0NDA0tISa2trypcvz/jx4zlw4ADHjh3Dx8cHgKioKPr06YO5uTn6+vrUrVuXO3fuyGzn0KFDeHh4oKmpiaOjI9OmTZNJopSUlFi9ejUtWrRAR0eHmTNn5uWfCUBSckY8GuofKw5VVJRRU1Pl7zvP8zwegLS0dPac/If4hGQqujnkSwwxcQkAGOprA5CcknGcNNU/1rJIj9NdxR+ntLR09p++SXxiEh6lHUhPT+f05Yc42prTYdgqSjebQNPeizj251257rduKQvuv47C+3/luTS1AXuH1aBtZTuZMjdfRFC3lAXm+hm/gCs7mVDUVJeLj0NlyjUvb82VaQ05NLIWoz1LoqOhIrc4X7x+h0fLyVRrNx2vKb68CnwnXZaens7QmVvp17Euzg5511zxIaaqWcSUH1LT0khLT5f5rANoaqhx4/4LAoLCCQ2P4adPEjMNdVUqlXXi1vvEO78lp6Tiu/8y+rpalCpunSf7jI5NBMDo/bXgVWAYIWHR1K7sIi2joa5GtXJOXLtX8AYf/vAU+dy+fkTf9RT5tLQ09u3bh5+fH0pKSpQsWZIWLVqgqlq4H0pft25dypYty969e+nZsyfNmjXD2NiYo0ePYmBgwJo1a6hXrx5PnjzB2NiYEydO0KVLF5YuXUqNGjV49uwZffr0AWDKlCnS7U6ZMoU5c+awePFiVFSy/lJISkoiKSlJOh0dHS23v6t4UQtsLY2ZueoQC8d0QFtLnVXbzxESFs3bMPntJzsePH1Dox4LSUxORUdLg83ze+dLG7tEImHK0v1ULutISScrAIrZW2Bjacys1YeYP7o92lrqrHl/nELeKe44+T0LxLPvYpLeH5MNs3vi7GBJSFg0cQlJLN9ymjG9mzKxf3PO/e1Hz/Eb2L1sINXKFZPL/m2NtelY1R6fP5+z5sxTytgZMqFlKZJT0zhw4w0As/bfZ0bbMvw5uT4paelIJBIm7rrLzZcR0u0cuvmG1+HxvItJorilHsObuuBspU/PtX/nOsZyrvZ4T+iMg60Z7yJiWOp7kl/6L+HMprEYGeiwcusZVFSU6dGmZq73ldOYHN/HtMT3JC37L+Hs+5jyg662JuVc7Vmx+TROdhaYGulx+Owt7vj5U9TalHfhGefx5zWJpkZ6vHkbnh8hS524eJ8+EzcSn5iChak+u5cNwMRQ99sr5pJEImHykn0y14KQ99dFc2N9mbJmxvoEBOfvcRJk5ThruX//Pi1atCA4OBhnZ2cAnjx5gpmZGQcPHix0NUKfc3Fx4e7du5w7d4579+4REhKChkZGG/GCBQvYv38/u3fvpk+fPsyaNYuxY8fStWtXABwdHZkxYwajR4+WSYI6depEjx49vrrfOXPmMG3aNIX8TWqqKmz8rQdDZm2neMOxqKgoU7NiCZnOt3mluL0Ff24dR1RMPAfP3sZr6mYOrxmS54nQuIW7efg0kIOrh0jnqamqsH52D4bP2Y5L43EZx6lCCepWLanQWJzszDntM5qomASOnL/D4Flb2bt8MAa6WgA0rlGavh3qAFC6hA3/3HvJ5v2X5JYEKSkp8eB1JIuPPQbALzCaYhZ6dKxaVJoE/e8nB8raGdF/wzXeRCRQ0dGEKa3cCI1J4sq/GbUff/ztL93mv8ExvAqNY8+wGrha6/PwTe6SyDpVZM9Vj1JF+anDTP44do0q5YqxYfefHF0/Mk+r9OtmEVP19zH1ef9+5Yf54zoxbv5Ofmo3HRVlZUoVt6Z5vXI8+PeNtMznx0kikeR7c8hPHsU5t3ks4ZGxbD5wmV7jN3Biw0jMjOXfJ+hTYxb8wcOngRxeOyTzws8OScZxUmg430UezVn5/f5/rxwnQb169aJUqVL8888/GBkZARAREUG3bt3o06cPV65ckXuQP5IPF4MbN24QGxuLiYns3S4JCQnS8ZRu3LjB9evXmTVrlnR5WloaiYmJxMfHo62dUbVaoUKFb+533LhxDB8+XDodHR2Nra2tPP4kAMq62HF+8xiiYxNITknF1EiPRj0WUrak/PaRHepqqjjaZnQCLudqz62H/qzecR7v8R3zLIbxi3Zz8uJ99q0cjJW5ocyysi62nPEd/f44pWFqpEuTXoso66K446SuporD+47R7iXtuPPIn3V/XGDWsNaoqihTvKjsXTvFi1pwTY7Nc6ExiTx9Gysz71lILA3LZCSmGqrKDG3iwiDff7jgFwLAk6AYXKz06VHLUZoEfe7BmyiSU9OxN9XJdRL0OW0tDVwci/DidSjKykq8i4ilSpuPPyLS0tKZseIA6/+4wJU/pnxlS4qJKT/ZW5uyzXsA8QlJxMYnYW6iz5Dpm7CxNMb0fc1GaHg05iYfaznCImMV0gE5J3S0NHC0NcPR1owKbg5UbD2drQevMLRbQ4Xtc+yC3Zz46z4HVw/BytxIOv/DsQkJi8byk0727yJiMPusdqig+EFzmFzLcRJ0584dmQQIwMjIiFmzZlGxYkW5Bvcj8vPzw8Ehoz9GkSJFOH/+fKYyhoaGQEY/hGnTptGqVatMZT4djVtH59tV4xoaGtIaJ0XSf1+78Mw/hNuP/Bnbt6nC9/k1EomE5OS8eX6dRCJh/KI9HLtwl70rBmJvZfLFsh+O0/OAEO488mdM77w7Th+OibqaKu4l7XjmHyKz/FlACDaWRl9YO+duvYjAwUz2HC1qpkNgREbHaFUVZdRVlUmXSGTKpKdLvjq2SHFLPdRVlQmNSfpime+VlJzKv6/eUqmMI60bVeSnCs4yy7uMWE3rRhVo17SS3PednZgKAm0tDbS1NIiKieev648Z3dcT2yLGmBnrcenGE+nt+skpqVy784xRfTzzOeLPSUhKUcy1QSKRMHbhbo5euMv+FYMyXQvsrUwwN9HnwrXHlHHO+AGUnJLK5VvPmDzgZ4XEJHyfHCdBzs7OvH37llKlZMdmCQkJoVgx+VSv/6jOnj3LvXv3GDZsGDY2NgQHB6OqqkrRokWzLF++fHkeP35cII5bbHySzC9Q/8Aw7j15jZG+NjaWxhw4cwtTQ12sLY3wexbIhEV7aVKzDHUqK7ap51PTVxykfjVXbCyMiIlPZO/JG1y8+S+7l3p9e2U5GLvgD/aduonP3F7oamtK2/31dDXR0lAH4ODZW5gY6mJjYYTfsyAmeu+lSU03mQ6S8jR79SHqVnHF2sKQ2Pgk9p++yeVbT9m2sB8A/TvVpd9kX6q4O1G9fHHOXfXj1KUH7Fk2UG4x+Pz1nO0Dq9O3bjGO3QmkjJ0h7arYMfmPewDEJaVy7VkYozxLkpSSzpuIeCo5mtCigg2/HXwIgK2JNs3LW/OnXwgRcck4WegxpnlJHryO4uaL3PehmLHiAPWrlcLawoiwiBiWbjpFbFwibZpUwshAJ1MfHDVVZcyM9XCys/jCFnPv05jefRJT2yYZiVdEdByBbyMIft+f7EMya2asL1MLI29/XX+ERAIOtma8evOOuWsO42BrTuvGlVBSUqJr65qs3nqGotZmFLUxZdXWM2hpqtO8XjmFxfT59enVJ9cnIwMdFm88QeMabliYGhAeFceGPX8RGBJJCwXFNGb+H+w5eYNN83qhq6Mp7Rupr6OJlqY6SkpK9G1fC2/fU9LaKW/fU2hpqtG6YcG7i1o0h33Dp51sZ8+ezeDBg5k6dSpVqlQB4OrVq0yfPp25c+cqJsoCKCkpieDgYNLS0nj79i3Hjx9nzpw5eHp68uuvv6KsrEzVqlVp2bIlc+fOxdnZmcDAQI4ePUrLli2pUKECkydPxtPTE1tbW9q2bYuysjJ3797l3r17eX4X2B0/f1oOWCadnrRkHwDtm1Zi+eQuvH0XzeQl+wgNj8HCVJ92TSoxokejPI0xNDyGflM28fZdNPq6mpQqZs3upV55loj57rsEQKtPjhOA94ROdGhWGYCQd9FMXbqf0PAYzE30adekIsO6K+44vYuIYdCMLYSERaGno4VrMSu2LexHrUoZSVfTWmWZO6odyzafYtLivTjZmbNuVg8ql3WSWwz3A6IY5PMPw5u64NWgOK/D45lz4CGHb33sQzJ8y02GN3VhfqdyGGirERiRgPexR9LBElNS06lazJRff3JAW0OFoMhELviFsOLkE9IlX9pz9gWFRDJw2iYiouIwNtSlfCl7DqweJtcBI783pvBPYjr4SUynLt5n+Jzt0vJeUzcBMKx7I0b0aKKwuGLiElnw+1GC30ViqKdNoxplGN6zCWqqGTdl9OlQh6SkFKYu2UNUTAJlS9qxcV4fhY0RBHDbz5+WXkul05O8M65PHZpVYsGYDvz76i07jl4jPDIOIwNtypW059CaoQrrK7hx70UAWnrJXguWTuxMR8+Ma8Gg/9UnMSmF0fP/IComnvKl7PljiVeBHCNIHnd3/ah3hylJJJJvXmKUlZVlsrwPq3yY9+l0Wpr8BjcrqD4fLNHIyIiyZcvSqVMnunbtKh0sMSYmhgkTJrBnzx5CQ0OxtLSkZs2azJkzR9pf58SJE0yfPp1bt26hpqaGi4sLvXr1onfv3kDGMd23bx8tW7bMUYzR0dEYGBjwJiQCff2C0watqlLwBpJMkuOAfPLy7U9l3nMffyy/Q8jkn5mN8zuETArid0FCATzHjXTU8zuETLLxdZhnoqOjsTY3IioqSmHX8A/fEx3XXUJdO3d30iXHx7K9V3WFxqsI2aoJOnfunKLj+KH4+PhIxwL6Gj09PZYuXcrSpUu/WKZRo0Y0avTlmoKC9KEUBEEQ/ntEc9g31KpVS9FxCIIgCIKQD8Szw75DfHw8/v7+JCcny8wvU6bMF9YQBEEQBKGgEU+Rz4HQ0FC6d+/OsWNZ9w8oDH2CBEEQBEH48eW4l+rQoUOJiIjg6tWraGlpcfz4cXx9fSlevDgHDx5URIyCIAiCICiIkpJ8Xj+iHNcEnT17lgMHDlCxYkWUlZWxt7enQYMG6OvrM2fOHJo1a6aIOAVBEARBUIDC3DE6xzVBcXFxmJubA2BsbExoaMYAVm5ubty8eVO+0QmCIAiCIChIjpMgZ2dnHj/OeFCiu7s7a9as4c2bN6xevZoiRfL+ad6CIAiCIHw/0RyWA0OHDiUoKAiAKVOm0KhRI7Zu3Yq6unq2xs4RBEEQBKHgEHeH5UDnzp2l/y5XrhwvX77k0aNH2NnZYWpqKtfgBEEQBEEQFOW7xwn6QFtbm/Lly8sjFkEQBEEQ8pg8mrN+0Iqg7CVBw4cPz/YGFy1a9N3BCIIgCIKQtwrz3WHZSoJu3bqVrY39qAfhv0xFWQmVH/XxvnmkILZlJ6QWvEFH789tmt8hZGL2y/L8DiGTkL0D8zuETFRUCt45XhCvS6lp4lmNhY14gKogCIIgFGLKfMet4lls40eU6z5BgiAIgiD8uERzmCAIgiAIhZKSEuS2dfIHzYF+2BosQRAEQRCEXBE1QYIgCIJQiCnLoSaoAPZzzxaRBAmCIAhCIVaY+wR9V3PY5s2bqV69OlZWVrx69QoAb29vDhw4INfgBEEQBEEQFCXHSdCqVasYPnw4TZs2JTIykrS0jPFMDA0N8fb2lnd8giAIgiAo0IfmsNy+fkQ5ToKWLVvG77//zoQJE1BRUZHOr1ChAvfu3ZNrcIIgCIIgKFZhfop8jpOgFy9eUK5cuUzzNTQ0iIuLk0tQgiAIgiAIipbjJMjBwYHbt29nmn/s2DFcXV3lEZMgCIIgCHlEWUlJLq8fUY7vDhs1ahQDBgwgMTERiUTCtWvX2L59O3PmzGHdunWKiFEQBEEQBAURj83Ige7du5Oamsro0aOJj4+nU6dOWFtbs2TJEjp06KCIGAVBEARBEOTuu8YJ6t27N7179+bdu3ekp6djbm4u77iEfFa2xRQCgsIzze/ZpgbzR7fLh4hg/e6/2LDnL2lcLo6WjOrZhAbVS+XJ/pf4nuTIhbv8++otWhpqVHBzYLLXzxSztwAgJTWNOWsOc+byQ14FhqGnq0nNCs5M8voZSzMDhcUVHBrJnNWHOf+3H4lJKTjamjFvTAfcnG0BOHbhLtsOXubek9dERMVxdP1IShW3Vlg8AJdvPWXFljPceRzA23fR+M7tRdNaZaTLzaoMznK9KQNbMLBLvVzvX0VZibEdK9O2tjPmhjq8jYhj2xk/Fuy6huT9g8I9qzrRrVFp3IuZY6KvRY0h27j/4p10G7bmetxd1z3L7Xebe5QDl57mKsZvnU8A89YdZf+pmwSGRKKmpkIZZ1vG9/PEo1TRXO37S3z3XsR330XpZ8zZoQjDejSiXtWMrg4L1h1j/+mMeNTfxzO2bzPKKyieL7l08ynLNp/mziN/gt9Fs2V+b5rVLptn+//W+Q3w5EUw01cc5PKtp6RLJLg4WLJuVndsLI3zLM7skkfH5h+0NSx3gyWamprKK44fXrdu3fD19QVAVVUVY2NjypQpQ8eOHenWrRvKyj9WZeEZn5GkpUmk037PA2k1cAUt6mXuFJ9XrMwNmTKwBY42Gefd9iN/03nkWi5sGUtJpyIK3//lW0/p0boG7iXtSE1LZ87qw7QbupK/to1HR0uDhMRk7j5+zfDujShV3JrImHgmee/lf6PXcmrjKIXEFBUTT+sBS6larji+8/pgYqTHq8B36OtqScskJCZRwc2BpnXcGTtvp0Li+Fx8QjKlilvT0bMK3cetz7T8/pGZMtNnrjxk6KzteNaRzxfZ0NYedG/ihpf3Kfz8wyhXzILlg+sTHZ/EmkN3ANDRUONvvyAOXHrK0kGZE68372Jx/lW2ib9ro9IMblWe0zde5TrGb51PAE625swZ0RZ7axMSk1JYs+Mc7Yas5O8/JmFqpJfrGD5XxNyQCf2bU9TGDIBdR6/Rfcw6TvmMwtmxCI52Zswe0QZ7q4x41u48T4ehq7i8axKmRrpyj+dL4hOSKF3Cms7Nq/DrmLzvhvGt8/vF61A8+3rTuXlVRvdugr6uFk9evkVDXS3PY80OZXLfp0eZHzMLynES5ODg8NWRIZ8/f56rgH5kjRs3ZuPGjaSlpfH27VuOHz/OkCFD2L17NwcPHkRV9ccZoPvzC6z3plM42JhSvXyxfIoImtR0k5me5PUzG/Zc5J/7L/IkCdrp7SUzvWRiJ1ybTuDuowCqliuGvq4Wu5cOkCkze3gbGvVcyOvgcIX8Aly19QxFzA1ZMK6jdJ5tEdn9tGpUESDLmj1FqV/NlfrVvnyjhIWJvsz08T/v8ZNHcYpay+eHVUWXIhz9+zkn/3kJQEBIDK1rlqBcsY+1LDvPPwIyanyykp4uISQyXmaeZ1Un9l38l7jElFzH+K3zCaB1owoyZaYP+YWth67y8GkgNSs65zqGzzX8qbTM9Lh+nmzad4kbD17i7FiEVg1l45k6+Be2HbqK37M31Kgg/3i+pEH1UnlWA5yVb53fs1cfoX41V6YMaiGdJ69zWxFETVAODB06VGY6JSWFW7ducfz4cUaNUsyv3R+FhoYGlpaWAFhbW1O+fHmqVKlCvXr18PHxoVevXvj7+zNo0CDOnDmDsrIyjRs3ZtmyZVhYfLw4z5w5k6VLl5KQkED79u0xNTXl+PHjWd6VlxeSU1L549h1vDrVKTBDo6elpbP/zE3iE5Kp6OaQLzFExyYCYKiv/dUySkpKGOhpfbFMbpy69IBalZzpP9mHv28/w8LMgF9bVqdj86oK2Z8ihIRFc+rSA5ZP7iK3bV59GEj3xm44WRnyLDCS0kVNqeJqxfh1f373Nss6mVHG0YxRq8/JLc5Pfet8Sk5JZdP+y+jraim8ORMyPmOHzt4mPjEJj9KZP2PJKalsOZARj2sxxcfzo0hPT+fU5QcM6lKPtkNWcv/Ja+yKmDCka4NMTWZC/stxEjRkyJAs569YsYJ//vkn1wH919StW5eyZcuyd+9eevbsScuWLdHR0eHChQukpqbi5eVF+/btOX/+PABbt25l1qxZrFy5kurVq7Njxw4WLlyIg8PXv+iTkpJISkqSTkdHR8vtbzhy/i5RsQl09Kwit21+rwdP39Cox0ISk1PR0dJg8/zeuDgqvhbocxKJhClL91G5rCMlnayyLJOYlMLMVQdp1dADPR3FJEEBQWFsOXCZXu1qM6BLfe74+TNlyT7U1VRp3biiQvYpbzuPXkNXR1OufTq899xAX0eDayv/R1p6OirKyszccoU9fz757m3+r0EpHvmHc+1RsNzi/OBr59PJi/fpM9mHhMQULEz0+WOJFyaGimt68nsWiGefxSS9/4xtmNMTZwdL6fJTl+7Tb7KvNJ6d3v0VGs+PJjQilrj4JJZuOs24vs2YPOBnzl71o9vY9exbMZDq5Yvnd4iZFOYHqMqto0qTJk3Ys2ePvDb3n+Li4sLLly85ffo0d+/eZdu2bXh4eFC5cmU2b97MhQsXuH79OpAxInfPnj3p3r07JUqUYPLkybi5uX1jDzBnzhwMDAykL1tbW7nFv+XgFepXdaWIAjv3Zldxewv+3DqOUxtG0KP1T3hN3cyj50F5HsfYBX/w8Gkga6Z3zXJ5SmoafSb7kJ4uYd6otgqLIz1dQqniNozu04zSJWzo3KIaHZtXYfOBSwrbp7xtO3yV1g0roKkhv/4SrWoUp10tZ3ovPE7tYTvw8j7FwJbl6FDX5bu2p6muQpuazmw5/UBuMX7qa+dTdY/inPUdw5G1Q6lbpSS9J24kNDxGIXEAONmZc9p3NIfXDuPXX6ozeOZWHr/4mPhVL1+c076jObRmKHWquNBnkg/vFBjPj0aSntGXsnFNN/p1rINbCRuG/NqAhtVL4buvYH4ulZRyP1ZQbhoJ5syZg5KSkkxLk0QiYerUqVhZWaGlpUXt2rV58ED285eUlMSgQYMwNTVFR0eHn3/+mdevX+do33JLgnbv3o2xccHr9V4QSCQSlJSU8PPzw9bWViZBcXV1xdDQED8/PwAeP35MpUqVZNb/fDor48aNIyoqSvoKCAiQS+wBQeFcuP6Y/7UoGM0r6mqqONqaUc7VnikDW1C6uDWrd5zP0xjGLdzNiYv32btiEFbmRpmWp6Sm0WvCRvwDw/hj6QCF1QIBmJvoU7yohcy8YvYWBL6NVNg+5enK7Wc8fRVCFzmfX9O7/YT3nhvs/etfHr4KY+f5R6w8eJthbSp8e+UstKhWHC0NVXacfSTXOOHb55OOlgaOtmZUKO2A94ROqKiosO3QFbnH8YG6mioONma4l7RjQv/mlCpmzbpdF6TLtbU0cLAxw6N0URaN74SqijLbDl9VWDw/GmNDHVRVlClR1FJmfomiFrwOjsinqAqu69evs3btWsqUkW0qnDdvHosWLWL58uVcv34dS0tLGjRoQEzMx4R76NCh7Nu3jx07dnDx4kViY2Px9PSUPtM0O3LcHFauXDmZfiESiYTg4GBCQ0NZuXJlTjdXKPj5+eHg4CBNhj73+fzPy0gkks9XyURDQwMNDY3cB/uZrYeuYmakR8N87IT4NRKJhOTk1Dzb17iFuzl64S77Vw7C3sokU5kPCdCL16HsXT4QYwMdhcbk4ebA84AQmXkvAkKwtsj8ZVoQbT14hbIutpSWcx8XLQ1V0j/73KSnS777DpguDVw5du0FYdEJ8ggPyN759KX1klLy5pz/sL/kr+xPIiHPPoM/AnU1Vcq52vHM/63M/GcBoZluWigo8qtjdGxsLJ07d+b3339n5syPd4xKJBK8vb2ZMGECrVq1AsDX1xcLCwu2bdtG3759iYqKYv369WzevJn69esDsGXLFmxtbTl9+jSNGjXKVgw5ToJatmwpM62srIyZmRm1a9fGxeX7qpr/y86ePcu9e/cYNmwYNjY2+Pv7ExAQIK0NevjwIVFRUZQsWRIAZ2dnrl27xv/+9z/pNvKrr1V6ejrbDl+lQ7NKqKqqfHsFBZu+4iD1q7liY2FETHwie0/e4OLNf9m91OvbK8vBmAV/sPfkDTbN7YWOtiZvwzL6XenraKKlqU5qaho9x6/n7uPXbFnQl7R0ibSMkb426mryvzuwV9tatPJawvLNp/Cs485tP3+2HbrKnJEfx3KKjI7jzdtI3r6LAuC5f0bSZGash/lnd2nJS2x8Ei9eh0qn/QPDuPfkNUb62tK75GLiEjh09jbTBreU+/6PX3/B8LYVeR0ag59/GGUczfBqUY6tnzRnGepqYGOmRxHjjES1uHVG4hgSES9zV5hDEQOqlbKm3fSDco3xW+dTXEIS3j4naVSjNBYmBkREx7Fxz18EhUbyc13FDFUxe/Uh6lZxxdrCkNj4JPafusnlW0/Ztqgf8QlJePuepNFPbpib6BMRHYfv3osEhUbSvK67QuL5ktj4JF4EfDy/XgWGce/xawwNtLHNg3F4vnV+D+hcj94TfajqXiyjOfOqHycu3mf/ikEKj+17yLNP0Of9Ub/2A33AgAE0a9aM+vXryyRBL168IDg4mIYNG8psp1atWly+fJm+ffty48YNUlJSZMpYWVlRunRpLl++rJgkKDU1laJFi9KoUSPpXVDCR0lJSQQHB8vcIj9nzhw8PT359ddfUVZWpkyZMnTu3Blvb29px+hatWpRoUJGNf2gQYPo3bs3FSpUoFq1auzcuZO7d+/i6OiY53/P+WuPeR0cQecCcqdRaHgM/aZs4u27aPR1NSlVzJrdS72oU7lknuzfZ+9FAFoOWCYzf+nEznRoVpnA0EiO/3UfgLq/zpUps2/FIIV0iCxb0o61s3owd80RlvqexMbSmCmDWvJLQw9pmVOXHjByznbp9MBpmwAY2q0Rw3o0lntMAHf8/GWO06Ql+wBo37SS9C6wfaduIpFIaPVJrPIyZu0FxneuwoJ+tTE10CY4PA6f4/eYt/OatEyTSo6sHNpAOr1hdBMAftv+N3O3/y2d36W+K0FhsZy9lfuxgT71rfNJRVmZf1+9ZefRa4RHxWJkoEO5knYcXDVEYTcDvAuPYdD0LYSERaGno4VrMSu2LepHrUouJCal8PRVCH8c3SCNx93Fjv0rB+Ocxzcn3PZ7RfN+S6XTExbvBaBjs8qsnPq/L60mN986v5vVLsv8Me1Y4nua8Yv34GRnzsY5Paji7qTw2PLb5/1Rp0yZwtSpUzOV27FjBzdv3pT2h/1UcHBGH7RP75r+MP3q1StpGXV1dYyMjDKV+bB+dihJstPW8gltbW38/Pywt7fPyWr/eZ8PlmhkZETZsmXp1KkTXbt2lQ6WmJ1b5GfMmMHSpUtJTEykXbt26Orqcu3aNa5cyX4/gOjoaAwMDAh+F4m+vmJ+7X+PgnKL/adSUtPzO4RMElKy36adV7TV87828HNmvyzP7xAyCdk7ML9DyCQtZ5f5PKGpVvDOp9S0gnMtiI6OxtrciKioKIVdwz98T0w6cAtNndwNvpkYF8OMFuUICAiQiTermqCAgAAqVKjAyZMnKVs2467Q2rVr4+7ujre3N5cvX6Z69eoEBgZSpMjHBLt3794EBARw/Phxtm3bRvfu3WXuigZo0KABTk5OrF69Oltx57h+vnLlyty6dUskQZ/x8fHBx8fnm+Xs7Ow4cODAV8tMmjSJSZMmSacbNGhAsWL5N0ihIAiC8N8lz+YwfX39byZtN27cICQkBA+Pj7XAaWlp/PnnnyxfvpzHjx8DGbU9nyZBISEh0goDS0tLkpOTiYiIkKkNCgkJoVq1atmOO8dJkJeXFyNGjOD169d4eHigoyPb8fPzHt5CzsTHx7N69WoaNWqEiooK27dv5/Tp05w6dSq/QxMEQRCEXKtXrx737t2Tmde9e3dcXFwYM2YMjo6OWFpacurUKcqVy+j/lpyczIULF5g7N6OrgYeHB2pqapw6dYp27TL6QAYFBXH//n3mzZuX7ViynQT16NEDb29v2rdvD8DgwR8fgKikpCS9wyknt6YJmSkpKXH06FFmzpxJUlISzs7O7NmzR9r7XRAEQRDkKa8HS9TT06N0adlHtOjo6GBiYiKdP3ToUGbPnk3x4sUpXrw4s2fPRltbm06dOgFgYGBAz549GTFiBCYmJhgbGzNy5Ejc3Nxy9H2Z7STI19eX3377jRcvXmR740LOaWlpcfr06fwOQxAEQSgklJSUct1fU979PUePHk1CQgJeXl5ERERQuXJlTp48iZ7ex75LixcvRlVVlXbt2pGQkCB9RJWKSvb7m2U7CfrQf1r0BRIEQRCE/46C8NiMD4+O+kBJSYmpU6dmeWfZB5qamixbtoxly5Z9scy35GjE6IJ4Z48gCIIgCML3yFHH6BIlSnwzEQoPD89VQIIgCIIg5J38GjG6IMhREjRt2jQMDPL/IZqCIAiCIMjHh4eg5nYbP6IcJUEdOnTA3NxcUbEIgiAIgiDkmWwnQaI/kCAIgiD89xSEjtH5Jcd3hwmCIAiC8B8ihz5B/NeToPT0gvNMFUEQBEEQhNzK8WMzBCE3CmKNonIBrMfVKoAPlyyITeKh+wrew0rNqgz+dqE8Fn7t+8dRUZSCeC1QKUDXgryMRRkllHNZlZPb9fOLSIIEQRAEoRArzLfI52iwREEQBEEQhP8KURMkCIIgCIWYuDtMEARBEIRCSQyWKAiCIAhCoST6BAmCIAiCIBQyoiZIEARBEAoxZeTQHCZukRcEQRAE4UcjmsMEQRAEQRAKGVETJAiCIAiFmDK5rxH5UWtURBIkCIIgCIWYkpJSrh+LUxAfq5MdP2ryJgiCIAiCkCuiJkgQBEEQCjGl96/cbuNHJJIg4ZsW+5xkxspD9O1QmznDW+d3OED+xXT51lOWbznDnUf+vH0XzaZ5vWhaq6x0+eFzt/Hdd4k7jwIIj4rj3OYxuJWwUVg8S3xPcuTCXf599RYtDTUquDkw2etnitlbZFl+xG872HzgMjOG/ELfDnUUFtfXjlNKahqzVx/m9OUHvHoThp6uJrUqOjNpQAuKmBkoJB5v35McOf/xOFV0c2DyANnjJJFImL/uGJsOXCYqJoHyrvbMHdUWF8cicolBV1uD8f088az9//buOq6q+4/j+OuCdKOEgSA2JnZtil2bTmcvmLHZ7dTZzpizsHWbgT0T42fnjDkMxMIOUERUGpU8vz+Yd15BxQH3Xsfnucd9zPs9557z5sK993u/dSqQz86Si9fvM2LmJgKuBKv3Gd6jOV9/VhtbKzPOXr7HsJ9/5+rtMI3jVC1XhNG9WlK5rBvJySlcvP6AdgMW8iIhKVtyvq5Cq3GEPIxIV97t84+Y/n37HDnnu4SGRzFh/jYOnLzCi4QkihZ2ZO7ozlQsXVgnefQ1U2bl5hWjpTssi7y9vdX9qa/ebt68qeto2eLclXv4bj1BmWIFdB1FTZeZnj1PoGzxgkwb2u4N2xOpVt6dMX0+1UqekwE36dr2I3b/OpgNc/qQkpxK+4ELiX+ekG7fXUcvcO7KPZzz5UxF41Vve56ev0jkwrUQhnRtysGV3+P7U3duBT/mi6FLcizPy+dpz2+D2Ti3D8kpqbQboPk8zVt1gEXrDvPTkHbsWzYEx7zWfN5/AXHxL7Ilw5zRnalXvRQ9x/lSu9MUDp26it+CfuqK34CvGtK7sxffT99AA+/phD+NYcv8fliam6iPUbVcETbN7c3hv67S0Hs69b+ezq8bjpKaqmRLxowcXDGUoF2T1bct8/sA0KqBZ46d822iYp7RrMds8uQxZMOcXvz5+yh+HPAZNlZmOsmjr5lE5khLUDZo2rQpy5cv1yhzcHDQuJ+YmIixsbE2Y2VZ3LMEvhvji8+oTsxctlfXcQDdZ2pYqwwNa5V54/b2zasBEBz6VCt5fvfprXF/zujOeDQfxYWrIdT0LKYufxgexciZG/ndpzddhuRcZeOltz1P1pZmbJ7XV6Ns6tDPafzNDO6HRVDI2T7b82x47XmaO7ozpZuNIvBqCLU8i6EoCkt+P8og78a09EprsZo/tgsezUezed9Zvv6sdpbOb2pixKdeFeky9BdOBtwCYNqvu2hRrzxd237E5MU76dnJi1nL97LzcCAAvcav4vreKXzepAortp4AYPKgNiz5/Qg+vvvVx74d8jhL2d4ln52Vxn2flfspUigftSsVe8Mjctaclfsp6GjLgrFfqMsKF8irkywv6WOm9/VhtuNknbQEZQMTExOcnZ01bg0aNKBv374MHjyYfPny0ahRIwCOHj1KtWrVMDExIX/+/IwYMYLk5GT1sWJjY+nSpQsWFhbkz5+f2bNnU69ePQYOHKj1n+v7nzfQqHYZ6lUrpfVzv4k+ZtInMXFprRa21ubqstTUVPpMXEWfLg2yrWsnu8XGPUelUmFjqZ1vzi+fJ7u/n6d7oU8JfxpDver//F2ZGBtRy7Mo/hfvZPl8eQwNyJPHkBeJml1Wz18kUaNiUVwL5sU5nw2HTl1Vb0tMSubEuZtUK+8OQD47S6qWK8LjiDj2Lh3MtT1T2LlkADUquGc5X2YlJiWzcfdpunxSQ2ezgXYfu0TF0oXxHrGUEk1GUveLafj6ndBJFn3O9D5eLpaY1duHSCpBOcjX15c8efJw4sQJlixZwoMHD2jevDlVq1YlMDCQRYsWsXTpUiZNmqR+zODBgzlx4gTbt29n//79HDt2jHPnzr3zXAkJCcTExGjcsmLzvrMEXgthrJa6dTJDHzPpE0VRGDd3K9UruFO66D9dhfNWHcDQ0IAe7evqMN2bvUhIYuKC7bRtUhkrLVSCFEVh7BzN5yn8adrrxdHeWmNfB3tr9basiHuWgP+F2wzr1gznfDYYGKho36wqVcq64pTPGqe8aed9HBGr8bjwiFgc/97mVjAfACN6NMfX7ySf919I4NUQ/Bb2w91Fs+U5p/zvyAWi457TqWUNrZwvI/cePGH5luMULezAprm9+aZNbUbO3Mz6//0lmf6ljIZ0/Jvbh0i6w7LBzp07sbS0VN9v1qwZAMWKFePnn39Wl48aNQoXFxfmz5+PSqWiVKlShIaGMnz4cMaOHUt8fDy+vr6sXbuWBg0aALB8+XIKFHj32JepU6cyYcKEbPl57j+K5IdZm9k8tzemJkbZcsys0sdM+mbEjI1cuRnKjiUD1GWBV4P5ZcNRDq74Xi/fpJKSU+gxejmpisL0YdoZZDv87+dp5y8D0m987SlSFCXbvuF+N3Yl88d2IWj3ZJKTUwi8FsKmvWcoX9JF43wacVSgkFZmYJAWZMXW46zdcQqAi9fvU7dqSb74tCYTF2zPnqBvsXr7nzSs6ZFjA9gzIzVVoWLpwozpnfZlqHxJF67eDmPZ5uN0bFFdMon3IpWgbODl5cWiRYvU9y0sLOjUqRNVqlTR2C8oKIiaNWtqfBjVrl2buLg47t+/T2RkJElJSVSrVk293cbGhpIlS74zw8iRIxk8eLD6fkxMDC4uLm95xJsFBgXzOCIWr6+nq8tSUlI5GXCL3zb+Qdjx2RgaarcRUR8z6ZORMzex9/glti0aQAFHO3X5qfO3eBIZh+dn49RlKSmpjJvnxy+/H+Xs1vE6SJsmKTmFbj8sIzj0KVsX9tdKK9CIGZvYe+wS2xdrPk8vW1vCn8ZoDBx/EhmLw2utQ//W3QdPaPndHMxNjbGyMOXR0xiWTvmG4NCnPHrZEpXXWv1vAAc7Kx4/TWsdCnuSVn7tjuZssWt3wyjkbEdOC3kYwdHT11g5rXuOn+ttnPJZU7KIs0ZZCTcndhw+r5tA6Gem9yErRosssbCwoFix9IMELSwsNO6nfatUpSuDtObIV/+d0T5vY2JigomJyTv3y4yPq5bk+LqRGmX9Jq6huJsT/b9qqJPKhj5m0geKojBy5iZ2Hb2A38J+uL42GLNds2p8XFWzEt1h4CLaNatKJx1+Q31ZAbod8hi/hf2wt7F494OyQFEURrx8nhakf55cC+TFMa81R/2vqVtmEpOSORlwK9u7X5+9SOTZi0RsrMxoUKM04+Zt496Dp4Q9icareikuXr8PgFEeQ2pXKsb4eduAtMH2oeFRFHN11DhescKOHDh5JVszZmTNjlM42FnRuPabJwZoQ/Xy7ty890ij7GZweI4MqM8sfcz0PnLzitFSCdIiDw8PNm/erFEZOnnyJFZWVhQsWBBbW1uMjIzw9/dXt+LExMRw48YN6tbV3ngOKwtTPIpqdsGZmxljZ2ORrjy3ZYp7lsCd+//MxrkX+pSL1+9jZ21OIWd7IqPjuf8okrDH0QDqN0bHvP+M+8hOw2dsZMu+s6yc1h0Lc1N1K4K1hSlmpsbY21ikq2AY5THE0d7qjWsJZYe3PU/O+Wz4ZsRSLlwLYe3M70hJVdS57azNMTbK/rel4dM3snnfWVb+3B1Li/TPk0ql4rsOdfHx3Y+7iwPuLg74+O7HzNSIto0rZ0uG+jVKo1LBjXvhuBdyYOKA1ty4F86a7X8CsHjdYQZ/05hbIeHcDnnMYO8mPHuRxKa9Z9THmLf6ACO/bcGl6w+4eP0+nVpWp7irE18PX5otGd8kNTWVtTtP0bFFNfLkMczRc71Lr85eNO02i1nL99K6YSXOXb7HSr+TzP6ho2QS700qQVrUu3dvfHx86NevH3379uXatWuMGzeOwYMHY2BggJWVFV9//TXDhg3D3t4eR0dHxo0bh4GBwQdby/6vOR8UTOvec9X3x/hsBaBji2rMH/sle45dpN+Pa9Tbe4xeAcCw7s0Y3qN5tudZseU4AK37zNMonzu6i07HIrztefq+e3P2HLsIQL0vp2k8zm9hf+pULp7teZa/fJ56p3+eOrVMe576fdmQFwlJfD99I9Gxz6hUxpWNc3pjaWGaLRmsLU0Z2+dTCjjaEhnzjB2HzjNp4Q6SU1IBmLPyAKYmxswY3gFbK3POXr5L237ziXv2z1pGi9cdwdTYiCmD22Jrbc7lGw9o03c+dx88yZaMb3LE/xr3wyLp8knNHD1PZlTycGXVzz2YuHA705fuoXCBvEwe3IZ2TatKpn8pN68YrVIy09ci3sjb25uoqCj8/Pw0yuvVq0fFihXx8fHRKD969CjDhg0jMDAQe3t7vv76ayZNmkSePGn10djYWHr27Imfnx/W1tZ8//33rF+/nvr16zN16tRM54qJicHGxoawJ1FYW2d/C8R/SQ6uM/ev5eTid//Wy4G5+kQf374cavTXdYR0IvznvXsnoVdiYmJwzmdLdHR0jr2Hv/yc8D1+DXNLq3c/4C2excXydZ2SOZo3J0hLUBatWLEiw/IjR45kWF63bl38/f3feDwrKyvWrPmnJSE+Pp4JEybw7bffZiWmEEIIIV4jlSA9ExAQwNWrV6lWrRrR0dFMnDgRgFatWuk4mRBCiP8imR0m9MqMGTO4du0axsbGVK5cmWPHjpEvXz5dxxJCCPEfJLPDhN7w9PTk7Nmzuo4hhBBC/OdJJUgIIYTIxXLz7DCpBAkhhBC5WHZcAPUD7Q2TSpAQQgiRmxmgwiCLbTlZfbyufKgDuoUQQgghskRagoQQQohcTLrDhBBCCJErqf7+L6vH+BBJd5gQQgghciVpCRJCCCFyMekOE/9ZqYp+XSBUD6/BqZf06Fem15JS9O+ZevqX/l2s1L7RJF1HSCfywBhdR0gnKTlV1xHUkrX4t63Khtlh0h0mhBBCCPEBkZYgIYQQIheT7jAhhBBC5Eq5uRIk3WFCCCGEyJWkJUgIIYTIxXLzOkFSCRJCCCFyMQNV1mfufqgzf6USJIQQQuRiubklSMYECSGEECJXkpYgIYQQIhfLzbPDpBIkhBBC5GIqst6d9YHWgaQ7TAghhBC5k7QECSGEELmYzA4TQgghRK6Um2eHSSVIAHAy4CbzVx8k8Gowj57EsPLn7jSvWyHDfQdPXc9KvxNMGtiGnp28tJbxp1928fNvuzXKHO2tuLpnitYyvOt5mvbrLrbuP0vooyiMjAypUMqFUT0/oXJZtxzJM8d3H7uOXuDGvUeYmhhRtVwRxvT+lGKuTup9+v+4mt93+Ws8rlIZV3b/NiRHMoH+/z3NW7mfqUt20r1dXSYObAPAriOBrNp2kgvXQoiMjmff8mGULVFIK3kAkpNTmPbbbjbtOU14RCxOea3p1KI6Q7o2wcAgZ0YuGBqoGPF1XdrVL4ujvSWPIuJYuzeQGWuOofx9EfMFwz6lcxPN393poPs07rdcfX/2wObUrVQE57xWxD9PxP/Kfcb/epAbIU+zPfPSTcdYtvkYIQ8jACjl7sywbs1oVLtMtp/rTeb47uN/f7/uzEyMqFKuCGNfe929ashP61m17SQ/DviM7zpq7z1TvJtUgt7A29ubqKgo/Pz8NMqPHDmCl5cXkZGR2Nra6iRbTnj2PIGyxQvSuWV1vEcsfeN+u44Gcu7yXZwdbLSY7h+l3POzdX5f9X1DQ+1++3jX81S0sCPThrbDtWA+XiQksWjdYT7vv4DTm8eSz84q2/P8GXCTb9p+RMXShUlJSWXK4p10GLiQP9b+gIWZiXq/+jVKM2d0F/V9ozyG2Z7lVfr893Q+6B6rt5/Eo1gBjfJnLxKpWq4ILb0qMmzaeq3leWnOqgOs2HKcBWO/oJR7fs4HBdN30hqsLc34rmO9HDnnwI61+aZlZXr/vI2gu4/xLFGA+cM+ISY+gSVb/6k4H/C/SZ/p29X3E5NTNI5z/sZDNh68REh4NHZWZoz4qi5bpnWhwhfzSE1VsjVzAUdbxvVthXuhfACs+99fdBn6C0dXj6B00fzZeq43ORlwk65/v+6SU1KZungn7Qcu5NhrrzuAXUcvcO7KPZzz6eY9MzNkdpjQmsTERIyNjXUdI52GtcrQsNbbv0k9DI9i+PRNbJzbm06DF2spmaY8hgY45bPWybnh3c/T502qaNyfNOAz1mz/kys3Q/m4aslsz7Pep7fG/TmjO1Om+SguXA2hpmcxdbmxcR4c82rvedPXv6f4Zwn0nbCK6cM7Msd3n8a2z5tWBSDkYfa3XmTGmYt3aPZxORrXKQtA4QJ52bzvLAFBwTl2zqoeBdl18hr7/roJQMijaNrWL4NnCc3KREJSCuGR8W88ju//AtT/DnkUzeTlhzn+63cUdrLl7sPIbM3c7ONyGvfH9P6UZZuPc+bSHa1Vgn7P4HXnkcHr7mF4FCNnbuR3n950GbJEK9n+DRVZn931gdaBZHZYVm3evJkyZcpgYmKCm5sbM2fO1Nju5ubGpEmT8Pb2xsbGhh49epCYmEjfvn3Jnz8/pqamuLm5MXXqVPVjoqOj+fbbb3F0dMTa2pr69esTGBio7R9NQ2pqKr3Gr6TvFw0o5a6dN5qM3A55jEfzUVRsNY5uo5Zz98ETnWV5l8SkZHz9TmJtaUaZ4gW1cs7YuBcA2Fqba5SfPHcTj+Y/ULP9jwyeuo7HEbFayfMmuvp7+mHmRhrU9MiRCmlWVa/gzh9nrnMzOByAS9fv81fgbRrV8sixc566FEJdzyIULWgPQFl3J2qUdWG//02N/epUcOX6xsGcXtEbn8EtyGdrntHhADA3NaJz0wrcfRjJg8fROZYdICUllc37zvDseVornq7EZPC6S01Npc/EVfTpotv3TPF20hKUBWfPnqV9+/aMHz+eDh06cPLkSXr37k3evHnx9vZW7zd9+nTGjBnD6NGjAZg7dy7bt29nw4YNFC5cmJCQEEJCQgBQFIUWLVpgb2/Prl27sLGxYcmSJTRo0IDr169jb2+fYZaEhAQSEhLU92NiYrL1Z5278gB5DA35tkPdbD3u+6hc1pWF47+kWGFHwiNimLlsL027zeLk+lHY21roLNfr9h6/xLejl/PsRRJO+azZNK8PeW0tc/y8iqIwdu5Wqldwp3TRf7p66tf04JP6nhRytiM49CnTft1F237z2b98KCbGRjmeKyO6+HvyO3COi9fvsysHx0JlxYCvGhET94Ia7SdhaKAiJVVhVM+WtH2tdTE7+aw/ibWFKf7Le5OSmoqhgQGTlh9m8+HL6n0OnL7Jtj+uEPIoGldnW37wrsf26V9Sr/dvJCb90y3W7dPKjO/REEszY67de8Jn368hKTk1R3JfvvmAJl1n8iIxGQszE1ZN76GzioaiKIzL4HU3b9UBDA0N6NFed++ZmWWACoMs9mcZfKBtQVIJeoudO3diaan54ZWS8s+LftasWTRo0IAxY8YAUKJECa5cucL06dM1KkH169dn6NCh6vvBwcEUL16cOnXqoFKpcHV1VW87fPgwFy9eJDw8HBOTtL7lGTNm4Ofnx6ZNm/j2228zzDp16lQmTJiQ5Z85I+eDgvnl9yMcXDkclQ47fhu90r3iQQGqlitC5c8msO5/f9GnS32d5XpdncrFObxqBBFRcazadpLuPyxj77KhONhn/5igV42csZGgm6FsXzJAo7x1w0rqf5cuWoCKpQtT+bPxHDh5hRb1Mh6snJN08ff04FEkY302s252b0xNdFPxe5et+8+xcc9pfpn4NaXc83Px+n1Gzd6Ms4MNnVpUz5FztqlXhvYNytJjylau3ntMuaJOTOndmIdPYlm//0JariNX1PsH3X1MwPWHXFjTn8bVi7Pz+FX1to0HL3H47B2c7S3p264my8e0pemA5SQkpaQ7b1YVd3XijzUjiY59xvZD5+k9fhU7lwzQSUVoxIyNXLkZyo5XXneBV4P5ZcNRDq74XqfvmZmVm7vDpBL0Fl5eXixatEij7K+//uKLL74AICgoiFatWmlsr127Nj4+PqSkpGBomDb4tEoVzW9y3t7eNGrUiJIlS9K0aVNatmxJ48aNgbTWpbi4OPLmzavxmOfPn3Pr1q03Zh05ciSDBw9W34+JicHFxeU9f+KMnTp/i8eRcVRsNVZdlpKSyti5W1ny+xEC/HKm8vUuFmYmlC5WgNshj3Vy/jexMDPB3cUBdxcHqpQrQtW2E1mz/U8GejfOsXOOnLmJvccv4bdoAAUc7d66r1M+Gwo523M7JDzH8ryNLv6eLlwL4UlkHE27zdA456nzt1i+5Rh3D8/E0FC3owPGzfNjwFeNaNO4MgAexQoQEhaBj+++HKsETfy2AT7rT7LlSFrLz5U74RRysmFQp9rqStDrHkXEEfIoSt2F9lJMfAIx8QncfhDB6aD73Nk6jJZ1Smm0KmUXY6M8uLs4AODp4UrAlWAWrz+Czw+dsv1cb/PydbfttdfdqfO3eBIZh+dn49RlKSmpjJvnxy+/H+Xs1vFazflOubgWJJWgt7CwsKBYsWIaZffv31f/W1GUdLV8RUk/E8LCQrOrplKlSty5c4fdu3dz4MAB2rdvT8OGDdm0aROpqankz5+fI0eOpDvO22ajmZiYqFuOslv75tWoW01zDEW7AQtp36wqnVrWyJFzZkZCYhLX7z6iZsWiOsuQOQoJSck5c2RF4YeZm9h19AJbF/bDtUDedz4mIjqe0PBInPLqZraKLv6ePqpcgkOrhmuUDZq8lmKuTvT5ooHOK0AAz18kYvDainOGBgYo2Ty76lVmpkakvvaelZqqpMvxKjtrMwo62hAWEffWY6tUKoyNcnYW4kuKopCYmDOvsTedb+Tfrzu/DF537ZpVSzfurMPARbRrVjXHKrTi35FKUBZ4eHhw/PhxjbKTJ09SokQJdSvQm1hbW9OhQwc6dOjA559/TtOmTYmIiKBSpUqEhYWRJ08e3NzccjC9prhnCdy5/0+Lyr3Qp1y8fh87a3MKOdtjb6NZkTPKY4ijvTXF37AuRk4YM2crTT8qSyEnOx5HxjFz2V5i419o9U3lbc+TnY0Fs5fvpelH5XDKZ0NEdDzLNh8jNDyKVg08cyTPiBkb2bLvLL7TumNpbkr407SxYFYWppiZGhP/LIHpv+2mhVcFnPJZE/IwgimLdmBvY0HzuuVzJBPo39+TpYUppdw1p8Sbm5lgZ22hLo+MiedBWCSPnqQN5r319wBlx7zWWplZ1+Sjssxavo9CTnaUcs/Phev3WbTuMJ0/ybkvGnv+vMHgznW4Hx5N0N3HlC/mTO+21VmzJ20ihoWpEcO/qsuOY0GERcRR2NmWsV29eBr9jP/93RXmmt+WNvXKcOjMLZ5GPyN/XisGdKzNi8SkdAOss8PEBdtpWMuDQk52xD57wZZ9Zzl+7gab5vZ+94OzyfC/X3crp3XHwtyUR3+/7qz/ft3Z21i84W/c6o1rCemSLJYo/pUhQ4ZQtWpVfvzxRzp06MCff/7J/PnzWbhw4VsfN3v2bPLnz0/FihUxMDBg48aNODs7Y2trS8OGDalZsyatW7dm2rRplCxZktDQUHbt2kXr1q3Tda1ll/NBwbTuPVd9f4zPVgA6tqjG/LFf5sg531doeBQ9Rq/gaVQ8+ewsqVzWjX1LB+OSP+PB4jnhbc/TjOEduXHvEet3+RMRFY+djTmepV3ZsWRgjo1VWLElrRL+WZ95GuVzRnehY4vqGBioCLodyoY9/sTEPscpnzW1KxXnl0nfYGlhmiOZ4MP4e3rdvmOXGDRlrfp+r3G+AAzu2pSh3Zrl+Pl/GtKOqUv+x7DpG3gSGYdzPhu+/qw2w7o1zbFzDp+/hx+86zGjfzPy2VoQ9jSWFf87x8+r/gAgJVXBw92Rjo3KY2NpyqOIWI6dv0fXSVuIe54IQEJiMjXLutCzTTVsLc14HBnHyYvBNOm/gidRz7I98+OIWHqOW8mjJzFYW5pSplhBNs3tjVf10tl+rjd5+bpr/drrbu7fr7sPTjasE/SB1oFQKRn134hML5a4efNmxo4dy40bN8ifPz/9+vXTGATt5ubGwIEDGThwoLrs119/ZeHChdy4cQNDQ0OqVq3K9OnT8fRMay2IjY1l1KhRbN68mcePH+Ps7MzHH3/M1KlTMz3OJyYmBhsbG0IfR2Ftrbt1dV6nj9eXycHehn8tRQ9DGerhLy8xh2YfZYVJHt13rb0ub+NJuo6QTuSBMbqOkE5OzWb7N2JiYijkZEd0dHSOvYe//Jw4eD4YS6usnSMuNoYGFQvnaN6cIJWg/yipBGWeHtY3pBKUSVIJyhypBGVObq0EHcqmSlD9D7ASpH+vViGEEEJojyqbbpk0depUqlatipWVFY6OjrRu3Zpr165p7KMoCuPHj6dAgQKYmZlRr149Ll/WnGmYkJBAv379yJcvHxYWFnz66acak5cyQypBQgghhNCao0eP0qdPH06dOsX+/ftJTk6mcePGxMf/c2mWn3/+mVmzZjF//nxOnz6Ns7MzjRo1Ijb2n9XuBw4cyNatW1m/fj3Hjx8nLi6Oli1baqzn9y4yMFoIIYTIxbQ9O2zPnj0a95cvX46joyNnz57l448/RlEUfHx8GDVqFG3atAHA19cXJycn1q5dy3fffUd0dDRLly5l1apVNGzYEIDVq1fj4uLCgQMHaNKkSaaySEuQEEIIkYu9vIp8Vm+QNs7o1durl3N6k+jotGUpXl4W6s6dO4SFhakXEYa0tfDq1q3LyZMngbSFhZOSkjT2KVCgAGXLllXvkxlSCRJCCCFysewcEuTi4oKNjY369urFwTOiKAqDBw+mTp06lC1bFoCwsDAAnJw011RycnJSbwsLC8PY2Bg7O7s37pMZ0h0mhBBCiGwREhKiMTvsXVcy6Nu3LxcuXEi38DCQ4RUZ3nUttszs8yppCRJCCCFys2xsCrK2tta4va0S1K9fP7Zv387hw4cpVKiQutzZ2RkgXYtOeHi4unXI2dmZxMREIiMj37hPZkglSAghhMjFVNn0X2YpikLfvn3ZsmULhw4dokiRIhrbixQpgrOzM/v371eXJSYmcvToUWrVqgVA5cqVMTIy0tjn4cOHXLp0Sb1PZkh3mBBCCCG0pk+fPqxdu5Zt27ZhZWWlbvGxsbHBzMwMlUrFwIEDmTJlCsWLF6d48eJMmTIFc3NzOnfurN63W7duDBkyhLx582Jvb8/QoUMpV66cerZYZkglSAghhMjFXp3dlZVjZNaiRYsAqFevnkb58uXL8fb2BuD777/n+fPn9O7dm8jISKpXr86+ffuwsrJS7z979mzy5MlD+/btef78OQ0aNGDFihXvvIC5Rm65bMZ/k1w2I/P08AoVctmMTJLLZmSOXDYjc3LrZTOOX7qfLZfNqFO20Ad32QxpCfqPS0hK4UVS5lfPzHH699mOuUnmvzVoi0oPKxwGepjJzFj/fnf6SB8rHHbNZ+g6Qjr3tw7UdQS1pBT9qZD9l0klSAghhMjN3vPaX288xgdIKkFCCCFELqbty2boE/3rvBZCCCGE0AJpCRJCCCFyMW3PDtMnUgkSQgghcrFcPCRIKkFCCCFErpaLa0EyJkgIIYQQuZK0BAkhhBC5WG6eHSaVICGEECIXy80Do6U7TAghhBC5krQECSGEELlYLh4XLZUgIYQQIlfLxbUgqQSJdOav2s9PS/5Ht3YfM2FAGwAeR8QyZdF2/vC/RnTcc6pXKMqPg9ri7uKQIxlmLtvN7OV7Ncoc7K0I2Pajevv2gwGEhkdhnMeQciVd+L5HcyqVccuRPG9SodU4Qh5GpCvv9vlHTP++vVazvBQb/4KpS/7H/44G8iQyjnIlCjFlcFsqebjqJA/AiXM3mbfqAIFXgwl7EsPq6T1oUa+CzvLMWr6XnYcDuXHvEaYmRlQr7874vq0o7uaks0ygf8+TLjIZGqgY8UUt2tXzwNHOnEcR8aw9cJkZ6/9E+fsCzMO71KLNxyUp6GBNUlIK528+YtLKY5y9FqY+jnEeQ37sXpe2dUthamLEH+fvMXTBAUKfxmV75ozeMwvVGZjhvqN6f0qvzvWzPYP4d6QSpAUqlYqtW7fSunXrDLcfOXIELy8vIiMjsbW11Wq2150PCmbN9j8pXbSAukxRFLqN/A2jPIYs/ak7VhYm/LL+CJ0GLuTw6hGYm5nkSJaSRZxZN7u3+r6hwT9D2NxdHJk0qC2FC+TlRUISv/5+lC5DFnN83Wjy2lnmSJ6MHFwxlJQURX0/6HYobfouoFUDT61leN3AKWsJuvWQReO/wjmfDRv3nKZN3/mcXD+KAo62Osn07HkCZUsUpMsnNfhq+G86yfCqk+du0r3dx3h6uJKcksKkRTto028+pzaMxiKH/p4zQ9+eJ9B+poHtqvFNswr0nrWHoHtP8CzuzPxBTYl5lsCSbecAuPUggu8XHeRuWDRmxnno9VlltkxqR6Vuv/E05jkAU7/zokn1onSbtpOImBdM6lGP9ePbUG/AKlJTlbdFeC8ZvWcCnNs2UeP+4VNBDP1pPc3rls+2c2eX3Dw7TAZGZ4Pw8HC+++47ChcujImJCc7OzjRp0oQ///wzU4+vVasWDx8+xMbGJoeTvl38swT6TVjFz993wMbKTF1+J+Qx5y7fY8qQdlQsXZiihZ2YMqQd8c8T8DtwLsfyGBoa4JjXWn17tXLzWaPKfFSlJK4F8lGySH7G9WtNbPwLgm6F5liejOSzs8Ipn7X6tvf4ZYoUykftSsW0muOl5y8S2XE4kPF9W1HLsxjuLg4M79Ec1wJ5Wb7luE4yATSqXYbRvT7hk/oVdZbhVZvm9aHzJzUoXTQ/5UoUYsHYL7gfFsn5oBCd5tK35wm0n6lq6QLsOnWLfadvExIew/YT1zkccBfP4v+00m06cpWj54O5FxbN1eCnjP7lCNYWJpQpktYybW1uzBeNyzHmtyMcPR/MxdvhfDf9f3i45aNexexrEX3Teyag8d7lmNeafccvUqtSMVwL5su282eXl7PDsnr7EEklKBu0bduWwMBAfH19uX79Otu3b6devXpERKTvJsmIsbExzs7OqHT8VzRq1iYa1PLgo6olNcoTkpIBMDExUpcZGhpgbJSH0xdu51ieO/efULn1WGq2n0jvcb7cC32S4X6JScms2X4Sa0tTPIoVyHAfbUhMSmbj7tN0+aSGzn6XySmppKSkavyuAExNjPgr8JZOMn0IYuJeAGBnba7jJOLU5QfUrViYogXtAChbxIEaHgXZf/pOhvsb5THg62bliY57waU7jwGoUNwJYyNDDp27q94vLCKeoHtPqFY6+94j3vSe+brHEbEcPHmFji1qZNu5RfaQSlAWRUVFcfz4caZNm4aXlxeurq5Uq1aNkSNH0qJFC/V+T5484bPPPsPc3JzixYuzfft29bYjR46gUqmIiooCYMWKFdja2uLn50eJEiUwNTWlUaNGhITk3LfUbQfOcfH6fUZ81zLdtmKuThRytuOnxTuJinlGYlIy81cdIPxpDOFPY3Ikj6eHKz6jurB6Zk9+/r4D4RExtO41h8joePU+B05cpkTj7ynaYBi/bjjK2lm9sbfVXlfY6/535ALRcc/p1FJ3b3RWFqZULVeEmcv28PBxNCkpqWzYfZqzl+8R9iRnflcfOkVRGDV7MzUqFtVpJVqk8dnoz+ajV/Ff0pXw7YM4Ou8rFm87y+ajVzX2a1LNnZDN/QnzG0Sv1pX5bNQmIv7uCnOysyAhKZnouASNx4RHPcPJziJbcr7tPfN1G3f7Y2FuSjM97AqDf8ZFZ/X2IZJKUBZZWlpiaWmJn58fCQkJb9xvwoQJtG/fngsXLtC8eXO6dOny1paiZ8+eMXnyZHx9fTlx4gQxMTF07NjxjfsnJCQQExOjccus0EeRjJuzhXljvsD0tRYEAKM8hvwyqSu3Q8Ip2/wHijf8nj8DbuJVozQGBjnzJ1S/hgct6lWgdNECfFSlJCt//hZIezN5qValYuxdNgy/RQOoV70Uvcat4ElkbI7kyYzV2/+kYU0P8jvotltz0fgvURQo23I0+T8axC8bjtC2SWWNMVXiH8N+3sDlm6H8Nslb11EE0ObjkrT3Kk2Pn3dSr/8qes/aTd82VenYoIzGfscCQ/i470qaDFnLwbN3WT7yE/LZvL0lT6UChayPB3rXe+brfv/fX3zWuHKm9tWJXFwLkoHRWZQnTx5WrFhBjx49WLx4MZUqVaJu3bp07NiR8uX/qfV7e3vTqVMnAKZMmcK8efPw9/enadOmGR43KSmJ+fPnU716dQB8fX0pXbo0/v7+VKtWLd3+U6dOZcKECf/qZ7hwLYQnkXE06z5TXZaSkspfgbdZseU4tw/NoHwpF/at+J6YuOckJaWQ186Slj1mUaFU4X91zvdlbmZCKff83Ln/WKOsSCEHihRyoHIZN+p0msT6nafo+2UjrWR6VcjDCI6evsbKad21fu7XFSnkwI7FA4h/nkBs/Auc89nQbdQyXAvY6zqa3vl++gZ2/3GRXb8MpKCTna7jCGBit7r4bPRnyx/XALhy9wmFHK0Z1L4a6w9eVu/3LCGJOw+juPMwijPXHnLm12582aQsszf48ygyHhOjPNhYmmi0BjnYmON/JevjBjPznmlomPal46/AW9wKDmfRhK+zfN6cIgOjRZa0bduW0NBQtm/fTpMmTThy5AiVKlVixYoV6n1erRBZWFhgZWVFeHj4G4+ZJ08eqlSpor5fqlQpbG1tCQoKynD/kSNHEh0drb69T9dZnSolOLByOHuXD1PfKpRy4bPGldm7fJj6xQxgbWlGXjtLboc85sK1EBp/VDbT58mKhMRkbtx7hGNe6zfuoyj/jF/StjU7TuFgZ0Xj2mXevbOWWJiZ4JzPhqiYZxw6dZVmH+tnU7wuKIrCsJ83sPNwINsX9dfLwaq5lZmJUbrZW6mpqRgYvP1DVqUCY6O07/WBNx6RmJSCl6eberuTnQWlXfPhH5T1StD7vGeu33mK8iVd8CheMMvnFdlPWoKyyctxO40aNWLs2LF0796dcePG4e3tDYCRkWYzqEqlIjU19a3HzGhw7ZsG3JqYmGBi8u+m9lqam1LKPb9GmZmpMXbW5urynYfOY29rQUEnO67efsi4OVto8lE56lYr9a/O+S4/LthGw1plKOhkx5PIWOau3E9c/AvaNavGs+cJzF25n0Z1yuKU15rI6Hh8t54g7HEULb0q5kiet0lNTWXtzlN0bFGNPHkMtX7+1x06FYSiKBRzdeR2yBPGz/OjmKsjnT/R3ViluGcJ3An5pxXvXuhTLl67j62NOS7O2m+hGjptA5v2nmHtjG+xNDfl0d/jpawtTTEzNdZ6npf07XnSRaY9f91icMca3H8cS9C9J5Qv6kjvz6qwZt8lAMxNjBjSsTq7T93iUWQ8dlamdGtZkQL5rNh2LK31KOZZIqv3XWRS97pExDwnMvYFP3avy5W7Tzhy/l6WM2bmPRPS1uzaeTiQsX1bZfmcOSo7Znd9mA1BUgnKKR4eHvj5+f3rxycnJ3PmzBl119e1a9eIioqiVKmcqXS8y6On0UyY78eTiFgc81rzedOqDPBunGPnexgeRd8JK4mIjsfe1pJKZVzZvngQhZzteZGQxM3gcDaOXk5kdBx21hZUKF2YzfP7U7JI/ncfPJsd8b/G/bBIunxSU+vnzkhM3HN+XLiD0PAo7KzNaelVgdG9PsFIhxW080H3+KTnXPX9UbO3ANCpRXUWjv9S63mWbT4GQMueczTKF4z9QqeVRX17nnSRafjig/zwZR1m9GlIPhszwiLiWbE7kJ/Xpi05kpKaSvFC9nQcVYa8NmZExLwg4HoYzYet52rwU/VxfvjlMMkpqSwf+Qmmxnn4IzCYTrO2ZusaQe+y7cA5FEWhVcNKWjvnv5GLF4xGpSiK9v4i/oOePn1Ku3bt6Nq1K+XLl8fKyoozZ87Qr18/WrRowdKlSzNcLNHW1hYfHx+8vb3TLZa4YsUKvv32Wzw9PZk7dy5GRkb07dsXRVEyvfZQTEwMNjY23Al9ipX1m7uQtE4P/9rMTXTfevM6fXxVvqs7Qoj3Ydd8hq4jpHN/60BdR1CLjYmhSIG8REdHY51D7+EvPycCboZhZZW1c8TGxuBZzDlH8+YEaQnKIktLS6pXr87s2bO5desWSUlJuLi40KNHD3744Yd/fVxzc3OGDx9O586duX//PnXq1GHZsmXZmFwIIYQgVzcFSSUoi0xMTJg6dSpTp0594z4ZNba9XBMIoF69ehnu06ZNG9q0aZMtOYUQQoiMyOwwIYQQQohcRlqChBBCiFwsO679JdcOE9nG29tbo7tMCCGEyCm5eMFoqQQJIYQQIneS7jAhhBAiN5PZYUIIIYTIjXLz7DCpBAkhhBC5mIpsGBidLUm0T8YECSGEECJXkpYgIYQQIhfLxUOCpBIkhBBC5GayTpAQQgghRC4jLUH/ccZ5DDDJoz913RdJqbqOkI5KL7/C6OFl5EWmZHQdQJHek51DdB0hnXw1B+o6gpqSkqDFs+XeDjGpBAkhhBC5mHSHCSGEEELkMtISJIQQQuRiubczTCpBQgghRK4m3WFCCCGEELmMtAQJIYQQuZhcO0wIIYQQuVMuHhQklSAhhBAiF8vFdSAZEySEEEKI3ElagoQQQohcLDfPDpNKkBBCCJGL5eaB0dIdJoQQQohcSVqCBAAnA26yYPVBAq+F8OhJDL7TutO8bnn1doca/TN83Li+rej7RYNszzNr2W5mL9+rUeZgb8W5bT+q79+4G8aUxTv46/wtUlMVShRxZtFEbwo62WV7njfmXL6XnYcDuXHvEaYmRlQr7874vq0o7uaktQwZCQ2PYsL8bRw4eYUXCUkULezI3NGdqVi6sM4y/bbxD+atPsijJ9GUcs/PlMFtqeVZTGd59DXTS7NX7OPHhTv4rmM9pg5uq+s4gO4ynQy4yfzVBwm8GsyjJzGs/Lk7zetWUG+f9usutu4/S+ijKIyMDKlQyoVRPT+hclm3LJ/b0NCAEd2b0q5pFRztrXj0NIa1//NnxrJ96ovlOthbMb7PJ3hVL4WNlRknA24xfOZmboc8Vh/H0d6Kif1bUa9aSSzNTbh5L5xZvvvZfigwyxmzLBePjJZKkJ5SqVRs3bqV1q1ba+V8z54nUqZ4QTq1rME3I5em237pf5M07h/88woDJ6+jpVeFdPtmlxJFnFk3u7f6vqHBPw2Xdx88oU2fuXRsUYMhXZthZWnKzbuPMDHW7p/0yXM36d7uYzw9XElOSWHSoh206TefUxtGY2FmotUsL0XFPKNZj9nUqVycDXN64WBnxZ37T7CxMtNJHoAt+87yw6zNzBjegeoV3Fmx5TjtByzkzw2jcXG2l0yvOXflHr5bT1CmWAGd5niVLjM9e55A2eIF6dyyOt4j0r8/FS3syLSh7XAtmI8XCUksWneYz/sv4PTmseSzs8rSuQd+2YBv2tSm98Q1BN0Ow7O0C/NHdyYm7gVLfj8KwOqfu5GcnEKXYb8RG/+CPp3r4TevNzU6TuXZi0QAFo//EmtLUzoP/ZWnUfF83qQyyyZ54+U9g4vXH2QpY1bl4jqQdIe9i0qleuvN29tb1xGzRcNaHvzQs+UbKzVOea01bnv+uEidysVxK5gvxzLlMTTAMa+1+pbXzlK97edf/kf9Gh6M6v0pZUsUwrVAPhrUKpPlN7z3tWleHzp/UoPSRfNTrkQhFoz9gvthkZwPCtFqjlfNWbmfgo62LBj7BZXLuFG4QF7qVitJkUIOOsu0cO0hvmhVk69a16JkEWemDvmcgk52LNt0TDK9Ju5ZAt+N8cVnVCdsrc11muUlXWdqWKvM3+9PFTPc/nmTKtStVgq3gvko5Z6fSQM+Izb+BVduhmb53FXLFWHXH5fYd+IKIQ8j2H4okMP+1/As7QJAURcHqpUrwpBpGwkICuZmcDhDft6IhbkJbRtXeuU4bvy68Q/OXQnmXuhTZi7fR3TccyqUdMlyRvHvSSXoHR4+fKi++fj4YG1trVE2Z84cjf2TkpJ0lFR7wp/GsP/EZbp8UiNHz3Pn/hMqtx5LrfYT6T3Ol3uhTwBITU3l0J9XKOLiQJfBi6j4yWg++XYWe/64kKN5MiMm7gUAdjr88Np97BIVSxfGe8RSSjQZSd0vpuHrd0JneRKTkjl/NYT61UtrlHtVL43/hTuS6TXf/7yBRrXLUK9aKZ3meJU+ZnqTxKRkfP1OYm1pRpniBbN8vFOBt6lbpThFXdK+RJQtXoAaFdzZf/IKgLr1+UXiP+/9qakKiUnJ1KjgrnGczxpWwtbaHJVKRZtGnhgb5eH4uRtZzphVL2eHZfX2IZJK0Ds4OzurbzY2NqhUKvX9Fy9eYGtry4YNG6hXrx6mpqasXr2a8ePHU7FiRY3j+Pj44ObmplG2bNkyypQpg4mJCfnz56dv375vzDFx4kScnJw4f/589v+Q7+n3Xf5YWpjSol7OdYV5erjiM6oLq2f2ZNr3HXgcEcNnveYQGR3Pk8g44p8nsHDNQepVL82aWT1p+nF5vh29nD8DbuZYpndRFIVRszdTo2JRPHTYjXHvwROWbzlO0cIObJrbm2/a1GbkzM2s/99fOsnzNCqOlJRUHOw1W+kc8loR/jRGMr1i876zBF4LYWyfT3WW4XX6mCkje49fwrXeEAp+NJjF6w+zaV4f8tpavvuB7+Cz8gCb95/Df8MPhJ+YxdGVw1i8/gib950D4PrdRwSHPmVs70+wsTLDKI8hA79qiHM+G5zyWauP023UCgwNDbizfyqPjs9k9ogOfDl8KXcfPM1yxqxTZfm/D7VDTMYEZYPhw4czc+ZMli9fjomJCb/88ss7H7No0SIGDx7MTz/9RLNmzYiOjubEifTf1hVFYeDAgfj5+XH8+HGKFy+e4fESEhJISEhQ34+Jybk38rU7T9G2cRVMTYxy7BxeNTw07lcu40adjpPYuNufTxumNTE3rlOWHh3qAVCmeCHOXLrD6m0nqKmjga3Dft7A5Zuh7P51kE7O/1JqqkLF0oUZ0zvtQ6t8SReu3g5j2ebjdGxRXWe5Xv+mqCgKKh1/fdSnTPcfRfLDrM1snts7R19b70MfM71JncrFObxqBBFRcazadpLuPyxj77Kh6Sq676tNI0/aN61Cj7EruXo7jHIlCjJlUBsePo5m/a7TJKek8tXIZcwb1Ym7B34iOTmFI6evq1uKXhrVswW2Vma06rOAiOg4mn9cnhVTvGn+3Vyu3HqYpYzi35NKUDYYOHAgbdq0ea/HTJo0iSFDhjBgwAB1WdWqVTX2SU5O5quvvuLMmTOcOHGCQoUKvfF4U6dOZcKECe8X/F/48/wtbt4L59dJ3+T4uV5lbmZCKff83Ln/GHsbC/IYGlDczVljn+KuTpzWUVfG99M3sPuPi+z6ZaBWZ6dlxCmfNSWLaD43Jdyc2HH4vE7y5LW1xNDQgPCnsRrlTyLisvwB9V/KFBgUzOOIWLy+nq4uS0lJ5WTALX7b+Adhx2djaKjdxnt9zPQmFmYmuLs44O7iQJVyRajadiJrtv/JQO/GWTruxH6t8Fl5gC37AwC4cushhZztGfR1I9bvOg1A4NX7fPzldKwtTDEyMuRpVDz7lw7i/NW0sYFuBfPybfuPqdlxKlfvhAFw6UYoNSu60/3zjxg8bUOWMmaVLJYosqRKlSrvtX94eDihoaE0aPD2qeWDBg3CxMSEU6dOkS/f2wcgjxw5ksGDB6vvx8TE4OKS/QPu1mz/kwqlXCibDX3t7yMhMZkb9x5Rrbw7xkZ5qFC6MLeDwzX2uR3ymILO2q2AKIrC99M38r8jgexYPADXHBwonlnVy7tz894jjbKbweEU0tGMJ2OjPFQs5cLhv65qDLw/4n+VZh+Xk0x/+7hqSY6vG6lR1m/iGoq7OdH/q4Y6qWzoY6bMU0hISs7yUcxMjUlNVTTKUlNTMTBI/6kfE582JtDdxQHP0oWZ8ssuAMxNjdMep2geJyU1FVUGxxHaI5WgbGBhYaFx38DAQL1+xEuvDpg2M8vcVOVGjRqxbt069u7dS5cuXd66r4mJCSYm/35KdtyzBO7c/2dNi+DQp1y8fh87a3P1h2ds/HN2HDrPhP6t//V5MuvHBdtoWKsMBZ3seBoZy9yV+4mLf8HnzaoB8F2n+vQZ50v1CkWpWakYR/+6yoGTl9kw983jqnLC0Gkb2LT3DGtnfIuluSmPnqR1Q1pbmmL29xuftvXq7EXTbrOYtXwvrRtW4tzle6z0O8nsHzrqJA9A78716TluJZ4ehalargi+W09wPyyCb9p+JJn+ZmVhikdRzbFk5mbG2NlYpCvPbZlef3+698r7k52NBbOX76XpR+VwymdDRHQ8yzYfIzQ8ilYNPLN87j3HLjH4m8bcfxRJ0O0wypcoRO9OXqzZcUq9T6v6FXkSFcf9sEg8iuXnp0Ft+N8fFzn81zUgbdzQrZDHzB7RnjFztxERHU+LuuXxqlaSjkN+zXLGrJKWIJGtHBwcCAsL0xhf8OqAZisrK9zc3Dh48CBeXl5vPM6nn37KJ598QufOnTE0NKRjx5z7EAsMCqZ1n3nq+2PmbAWgQ/NqzB/7BQBb959DURTaNK6cYzleehgeRd8JK4mMjsfe1pJKZVzZtniQukLW7OPyTBnajgWrDzB2zhaKFnZgyY/fUK28+zuOnL2WbU6bTt2yp+YswQVjv6BzDs+ee5NKHq6s+rkHExduZ/rSPRQukJfJg9vQrmnVdz84h7RpXJmI6Hh+/m03j57EULpofn736U3h/Lpbj0cfM4mMnQ8KpnXvuer7Y3zS3p86tqjGjOEduXHvEet3+RMRFY+djTmepV3ZsWQgpdzzZ/ncw2du5ofvmjNjWDvy2VkS9iSGFVtP8PPSfxZzdcpnzeSBrXGwt+LRkxjW7z7N9Fe2J6ek0n7QEsb1+YR1M7/FwsyYO/ef0HvimnRjh4R2qZTXmyzEG61YsYKBAwcSFRUFwN27dylSpAgBAQEas8GCgoIoU6YMU6dO5fPPP2fPnj2MGTMGa2tr7t69C4Cvry89e/Zk2rRpNGvWjNjYWE6cOEG/fv0AzcUSN23axJdffsmqVav4/PPPM5U1JiYGGxsbHoRHYm1t/e4HaMmLpFRdR0jH0lT/vgvo48tS14OYPxT6+LvTR6l6+DTlqzlQ1xHUlJQEEgKXEB0dnWPv4S8/J4LDsv45ERMTQ2FnuxzNmxP0uUP3g1W6dGkWLlzIggULqFChAv7+/gwdOlRjn6+//hofHx8WLlxImTJlaNmyJTduZLxexOeff46vry9ffvklW7Zs0caPIIQQIpfIzesESUvQf5S0BGWetARljrQEZY4+/u70kbQEvZ02W4JCHmVPS5CL04fXEqR/7/5CCCGE0JrcfO0wqQQJIYQQuVkurgXJmCAhhBBC5ErSEiSEEELkYv9c/ytrx/gQSSVICCGEyMVy82KJ0h0mhBBCiFxJWoKEEEKIXCwXj4uWliAhhBAiV1Nl0+09LVy4kCJFimBqakrlypU5duxYln+U9yWVICGEECIXU2XTf+/j999/Z+DAgYwaNYqAgAA++ugjmjVrRnBwcA79lBmTSpAQQgghtGrWrFl069aN7t27U7p0aXx8fHBxcWHRokVazSFjgv6jXi7dHxsbo+MkmhL08LIZqYn69zLQx0svyGUzMkcff3f6SB8vm6GkJOg6gpqSkpj2fy38PcXGxmR5dtfLz5qYGM3PHBMTE0xMTDTKEhMTOXv2LCNGjNAob9y4MSdPnsxakPekf+/+IlvExsYCUKqoq46TCCGE+LdiY2OxsbHJkWMbGxvj7OxM8SIu2XI8S0tLXFw0jzVu3DjGjx+vUfbkyRNSUlJwcnLSKHdyciIsLCxbsmSWVIL+owoUKEBISAhWVlZZ+gYfExODi4sLISEhenNRPMmUOZIpcyRT5kimzMmuTIqiEBsbS4ECBbIxnSZTU1Pu3LlDYmJithxPUZR0nzevtwK96vV9M3p8TpNK0H+UgYEBhQoVyrbjWVtb682bzEuSKXMkU+ZIpsyRTJmTHZlyqgXoVaamppiamub4eV6VL18+DA0N07X6hIeHp2sdymkyMFoIIYQQWmNsbEzlypXZv3+/Rvn+/fupVauWVrNIS5AQQgghtGrw4MF8+eWXVKlShZo1a/LLL78QHBxMz549tZpDKkHirUxMTBg3btxb+3W1TTJljmTKHMmUOZIpc/Qxkz7q0KEDT58+ZeLEiTx8+JCyZcuya9cuXF21O5lHpch8TiGEEELkQjImSAghhBC5klSChBBCCJErSSVICCGEELmSVIKEEEIIkStJJUgIIYQQuZJUgsQbvXjxQtcRhBBCr124cOGN2/z8/LQXRPwrUgkSGlJTU/nxxx8pWLAglpaW3L59G4AxY8awdOlSneW6desWo0ePplOnToSHhwOwZ88eLl++rLNM+mjixIk8e/YsXfnz58+ZOHGi1vMkJyczYcIEQkJCtH5u8d925swZVq1axerVqzlz5ozOcjRp0kT9PvmqzZs306VLFx0kEu9FEeIVEyZMUNzd3ZXVq1crZmZmyq1btxRFUZTff/9dqVGjhk4yHTlyRDEzM1MaNmyoGBsbqzNNmzZNadu2rU4y6SsDAwPl0aNH6cqfPHmiGBgY6CCRolhYWCh37tzRyblF1kVGRiq//vqrMmLECOXp06eKoijK2bNnlfv37+skT0hIiFKnTh1FpVIpdnZ2ip2dnaJSqZTatWsrwcHBWs8zYcIExc3NTQkNDVWXrV+/XjE3N1c2bNig9Tzi/ciK0ULDypUr+eWXX2jQoIHG8uXly5fn6tWrOsk0YsQIJk2axODBg7GyslKXe3l5MWfOHK1mGTx4cKb3nTVrVg4myZjyhqswBwYGYm9vr/U8AA0bNuTIkSN4e3vr5PwZ8fT0zPB5UqlUmJqaUqxYMby9vfHy8tJapjf9bb2aqVWrVlr9PV64cIGGDRtiY2PD3bt36dGjB/b29mzdupV79+6xcuVKrWV5qWvXriQlJREUFETJkiUBuHbtGl27dqVbt27s27dPq3nGjh3L06dPadiwIceOHWPPnj10796dVatW0bZtW61mEe9PKkFCw4MHDyhWrFi68tTUVJKSknSQCC5evMjatWvTlTs4OPD06VOtZgkICNC4f/bsWVJSUtRvxtevX8fQ0JDKlStrNZednR0qlQqVSkWJEiU0PuBTUlKIi4vT+jV5XmrWrBkjR47k0qVLVK5cGQsLC43tn376qdYzNW3alEWLFlGuXDmqVauGoiicOXOGCxcu4O3tzZUrV2jYsCFbtmyhVatWWskUEBDAuXPn1H9PiqJw48YNDA0NKVWqFAsXLmTIkCEcP34cDw8PrWQaPHgw3t7e/PzzzxpfQJo1a0bnzp21kuF1x44d4+TJk+rXHEDJkiWZN28etWvX1kmmOXPm8OWXX1KjRg0ePHjAunXrtPZ3I7JGKkFCQ5kyZTh27Fi667ds3LgRT09PnWSytbXl4cOHFClSRKM8ICCAggULajXL4cOH1f+eNWsWVlZW+Pr6YmdnB0BkZCTffPMNH330kVZz+fj4oCgKXbt2ZcKECdjY2Ki3GRsb4+bmRs2aNbWa6aVevXoBGbeMqVQqUlJStB2JJ0+eMGTIEMaMGaNRPmnSJO7du8e+ffsYN24cP/74o9Y+zF628ixfvhxra2sAYmJi6NatG3Xq1KFHjx507tyZQYMGsXfvXq1kOn36NEuWLElXXrBgQcLCwrSS4XWFCxfO8AtZcnKy1t4Ptm/fnq6sdevWHD16lE6dOqFSqdT76KKSL96DbnvjhL7Zvn27YmNjo/z000+Kubm5Mn36dKV79+6KsbGxsm/fPp1kGjZsmFKnTh3l4cOHipWVlXLjxg3l+PHjiru7uzJ+/HidZFIURSlQoIBy6dKldOUXL15U8ufPr4NEaeOnEhMTdXLuD4m1tbVy48aNdOU3btxQrK2tFUVRlKCgIMXS0lJrmQoUKKBcvnw5XfmlS5eUAgUKKIqSNhYnb968Wsvk6OionDt3TlEURbG0tFSPx9u7d69SqFAhreV4lZ+fn1KtWjXl9OnTSmpqqqIoinL69GmlRo0aytatW7WSQaVSZeqmq3F4IvNkdpjQ8Mknn/D777+za9cuVCoVY8eOJSgoiB07dtCoUSOdZJo8eTKFCxemYMGCxMXF4eHhwccff0ytWrUYPXq0TjJB2rf0R48epSsPDw8nNjZWB4mgbt26GBkZAWkzwmJiYjRuuqYvyy6Ymppy8uTJdOUnT57E1NQUSOsC1uaVwKOjo9UzH1/1+PFj9e/O1taWxMRErWVq1aoVEydOVLe8qFQqgoODGTFihM7Gu3h7e3P+/HmqV6+OqakpJiYmVK9enXPnztG1a1fs7e3Vt5ySmpqaqZsuWjnF+5HuMJFOkyZNaNKkia5jqBkZGbFmzRomTpxIQEAAqampeHp6Urx4cZ3m+uyzz/jmm2+YOXMmNWrUAODUqVMMGzaMNm3a6CTTs2fP+P7779mwYUOG46V08aackpLClClTWLx4MY8ePeL69eu4u7szZswY3Nzc6Natm9Yz9evXj549e3L27FmqVq2KSqXC39+f3377jR9++AGAvXv3arULuFWrVnTt2pWZM2dqZBo6dCitW7cGwN/fnxIlSmgt04wZM2jevDmOjo48f/6cunXrEhYWRs2aNZk8ebLWcrzKx8dHJ+cV/1G6booS+ikhIUEJCQlR7t27p3ET/4iPj1d69eqlmJiYKAYGBoqBgYFibGys9OrVS4mLi9NJpt69eyulS5dWNm7cqJiZmSnLli1TfvzxR6VQoULK6tWrdZJJH5ddUBRFWb16tVKjRg31NOsaNWooa9asUW9/9uyZ8vz5c63liY2NVXc9v/r31KNHD/XfU0BAgBIQEKC1TC8dPHhQmT59ujJt2jRl//79Wj+/PuvXr58yZ86cdOXz5s1TBgwYoP1A4r2oFEVRdF0RE/rjxo0bdO3aNV1XgfL31GtttSTo+1T0lJQUjh8/Trly5TAxMeHWrVsoikKxYsXSzX7SpsKFC7Ny5Urq1auHtbU1586do1ixYqxatYp169axa9curWcqVqwYS5YsoUGDBlhZWREYGIi7uztXr16lZs2aREZGaj2TPouLi+P27dsoikLRokWxtLTUdSQNUVFR2NraavWcMTExGoPF3+blftpSsGBBtm/fnm5G6Llz5/j000+5f/++VvOI9yPdYUKDt7c3efLkYefOneTPnz/DtVS04fWp6G+iq3yGhoY0adKEoKAgihQpQvny5XWS43URERHqWXTW1tZEREQAUKdOHfUsLW3Tx2UXXjp79ixBQUGoVCo8PDx0NgPyVZaWltjb26NSqXReAZo2bRpubm506NABgPbt27N582acnZ3ZtWsXFSpU0EoOOzs7Hj58iKOjI7a2thm+7rX9Re2lp0+faszGfMna2ponT55oNYt4f1IJEhrOnz/P2bNnKVWqlE5zvDoVXV+VK1eO27dvp5u6r0vu7u7cvXsXV1dXPDw82LBhA9WqVWPHjh1a//b+kj4uuxAeHk7Hjh05cuQItra2KIpCdHQ0Xl5erF+/HgcHB61nSk1NZdKkScycOZO4uDgArKysGDJkCKNGjcLAQPvzWJYsWcLq1asB2L9/P/v372f37t1s2LCBYcOGaW1hwkOHDqkHOuvbe0OxYsXYs2cPffv21SjfvXs37u7uOkolMk2HXXFCD1WpUkU5duyYrmN8EPbu3atUrFhR2bFjhxIaGqpER0dr3HRh1qxZ6vEJhw4dUszMzBRjY2NFpVIpPj4+Osmkj8sutG/fXqlcubJy5coVddnly5eVKlWqKB07dtRJphEjRigODg7KwoULlcDAQOX8+fPKggULFAcHB+WHH37QSSZTU1P1pSj69++vfPvtt4qiKMq1a9cUW1tbnWTSN0uXLlXMzMyUsWPHKkeOHFGOHDmijBkzRjE3N1d++eUXXccT7yBjgoSGQ4cOMXr0aKZMmUK5cuXU061f0lZ/e5s2bVixYgXW1tbvnGm1ZcsWrWR63avfzF9tnld01CyfkeDgYM6cOUOxYsV02mW3d+9epkyZwtmzZ0lNTaVSpUqMHTuWxo0b6ySPjY0NBw4coGrVqhrl/v7+NG7cmKioKK1nKlCgAIsXL063uN62bdvo3bs3Dx480EmmTZs2UatWLUqWLMmkSZNo164d165do2rVqjpbdiEqKgp/f3/Cw8NJTU3V2PbVV19pPc+iRYuYPHkyoaGhALi5uTF+/HidZBHvR7rDhIaGDRsC0KBBA41ybX+w29jYqCsWGfW36wN9apY/dOgQffv25dSpUxoV1cKFC2NjY0OtWrVYvHix1leyfknfll1ITU1NV8GHtOUYXv9Q1ZaIiIgMu6FLlSqlHtulbW3atKFz584UL16cp0+f0qxZMyCt2zyjcV7asGPHDrp06UJ8fDxWVlYaX0BUKpVOKh69evWiV69ePH78GDMzM52P5RKZJy1BQsPRo0ffur1u3bpaSiLex6effoqXlxeDBg3KcPvcuXM5fPgwW7du1XKyNFFRUWzatInbt28zdOhQ7O3tOXfuHE5OTlq/9AmkrckTFRXFunXrKFCgAJA2gLtLly7Y2dnp5HmqXr061atXZ+7cuRrl/fr14/Tp05w6dUrrmZKSkpg7dy7BwcF4e3urx3D5+PhgaWlJ9+7dtZ6pRIkSNG/enClTpmBubq7184v/FqkEiQ9GeHg4165dU18k1NHRUesZLly4QNmyZTEwMODChQtv3Veb3U+urq7s2bOH0qVLZ7j96tWrNG7cmODgYK1leun1K5Ffu3ZNvViirq5EHhISQqtWrbh06RIuLi7qlZDLlSvHtm3bKFSokNYzHT16lBYtWlC4cGFq1qyJSqXi5MmThISEsGvXLq234iUlJfHtt98yZswYvRrga2FhwcWLF/UmU5EiRd46S/X27dtaTCPel1SCRIaePXtGcHBwuiX6dTGuJCYmhj59+rB+/Xp1d5yhoSEdOnRgwYIFWu0uMzAwICwsDEdHRwwMDFCpVGT0EtL2mCBTU1MuXbr0xi6KmzdvUq5cOZ4/f661TC81bNiQSpUqqa9E/nKdoJMnT9K5c2fu3r2r9UwvHThwgKCgIBRFwcPDQ90drCuhoaEsWLCAq1evqjP17t1b3Vqlbba2tpw7d05vKhyQ1kXXsWNH2rdvr+soQNoV5F+VlJREQEAAe/bsYdiwYYwYMUJHyURmyJggoeHx48d888037N69O8Ptuhjs2717d86fP8/OnTs1viEPGDCAHj16sGHDBq1luXPnjnr69J07d7R23ncpWLAgFy9efGMl6MKFC+TPn1/LqdLo25XIU1NTWbFiBVu2bOHu3buoVCqKFCminiqvi7WnkpKSaNy4MUuWLNHZ5Sgy8tlnn+Hn5/dei5fmhFev2t6iRQuGDRvGlStXMpy8oe2rtg8YMCDD8gULFnDmzBmtZhHvT1qChIYuXbpw9+5dfHx88PLyYuvWrTx69Ei9fkmLFi20nsnCwoK9e/dSp04djfJjx47RtGlT4uPjtZ4J0hZJy5s3L5DWvfLrr7/y/PlzPv30U613XfTr148jR45w+vRp9QVAX3r+/DnVqlXDy8sr3XgTbXBycmLPnj14enpqtATt27ePbt26ERISorUsiqLwySefqBf6K1WqFIqiEBQUxMWLF/n000/x8/PTWp5XOTg4cPLkSZ1fE+9VkydPZsaMGTRo0IDKlSunWw29f//+WsmR2TWS9GVWJqR1g1WsWFEvLlws3kLbc/KFfnN2dlb++usvRVEUxcrKSrl27ZqiKIqybds2pXbt2jrJ5OLioly4cCFdeWBgoFKwYEGt57lw4YLi6uqqGBgYKCVLllQCAgIUJycnxdLSUrG2tlYMDQ2VrVu3ajVTWFiYUqBAAcXFxUWZNm2a4ufnp2zbtk356aefFBcXF6VAgQJKWFiYVjO91KNHD6V169ZKYmKiYmlpqdy+fVu5d++e4unpqfVrKy1btkyxsrJSDh06lG7bwYMHFSsrK8XX11ermV4aPHiwMnz4cJ2c+03c3NzeeCtSpIiu4+m1adOmKa6urrqOId5BKkFCg5WVlXLnzh1FURTF1dVVOX78uKIoinL79m3FzMxMJ5mWLFmiNGzYUAkNDVWXPXz4UGncuLGyePFiredp2rSp0rJlS+XYsWPKd999pxQsWFD55ptvlJSUFCUlJUXp3bu3Ur16da3nunv3rtKsWTPFwMBAUalUikqlUgwMDJRmzZqpf6e6EB0drdSuXVuxtbVVDA0NFRcXF8XIyEj5+OOPtX6h2UaNGilTp0594/bJkycrjRs31mKif/Tt21extrZWKlWqpHz77bfKoEGDNG653alTp5Rdu3ZplPn6+ipubm6Kg4OD0qNHD+XFixdaz1WxYkXF09NTfatYsaLi7OysGBoaKkuWLNF6HvF+pDtMaKhatSqTJk2iSZMmtG7dGmtra6ZOncrcuXPZtGkTt27d0koOT09PjbEZN27cICEhgcKFCwNpiwCamJhQvHhxzp07p5VML+XLl49Dhw5Rvnx54uLisLa2xt/fnypVqgBpM7Fq1KihkwX3ACIjI7l58yaKolC8eHHs7Ox0kuN1hw8f1lgsUReDkJ2dndmzZw8VK1bMcHtAQADNmjXT6lil27dv4+bmlm5trlepVCoOHTqktUwZeflRoavr9TVt2hQvLy+GDx8OwMWLF6lUqRLe3t6ULl2a6dOn89133zF+/Hit5powYYLGfQMDAxwcHKhXr57OLz8k3k0GRgsNAwcO5OHDhwCMGzeOJk2asGbNGoyNjVmxYoXWcrRu3Vpr53pfERERODs7A2kXu7SwsFBf1wjSLvYYGxurq3jY2dmlWwlZV940CNnZ2Vkng5AjIiJwcnJ643YnJyetX9W+ePHiPHz4UL34ZocOHZg7d+5bc2rTypUrmT59Ojdu3ADS1ukZNmwYX375pVZzBAYGMmnSJPX99evXU716dX799VcAXFxcGDdunFYrQcnJybi5udGkSRP1e4L4sEglSGjo0qWL+t+enp7cvXuXq1evUrhwYfLly6e1HOPGjdPauf6N1z+8dfXtWJ8pisKnn36qHoRcrlw59SBkb29vtmzZovVByCkpKeTJ8+a3PUNDQ5KTk7WYiHRLLOzevVtng/1fN2vWLMaMGUPfvn2pXbs2iqJw4sQJevbsyZMnT964OGdOiIyM1KgYHj16lKZNm6rvV61aVauD7AHy5MlDr169CAoK0up5RfaRSpB4K3NzcypVqqTrGACcPXuWoKAgVCoVHh4eOrsCOYC3tzcmJiYAvHjxgp49e6pnziQkJOgslz5ZsWIFf/zxBwcPHsTLy0tj26FDh2jdujUrV67U6mUOFEXR+N29Th9+d/o0QmHevHksWrRI43fUqlUrypQpw/jx47VaCXJycuLOnTu4uLiQmJjIuXPnNLqiYmNjM7wUSk6rXr06AQEBuLq6av3cIuukEiTeaw2QWbNm5WCSjIWHh9OxY0eOHDmiXsslOjoaLy8v1q9fr163R1u+/vprjftffPFFun3kwomwbt06fvjhh3QVIID69eszYsQI1qxZo9Xn6vXfXUa0/btTqVR627L48OFDatWqla68Vq1a6m5zbWnatCkjRoxg2rRp+Pn5YW5urrEUxYULFyhatKhWMwH07t2bIUOGcP/+/QyXEdDlhYvFu8nAaJHhh1RGdDU4s0OHDty6dYtVq1apLwtx5coVvv76a4oVK8a6deu0nkm8mz4OQtZHBgYGNGvWTN06tWPHDurXr5/uw3TLli1az1a2bFk6d+7MDz/8oFE+adIkfv/9dy5evKi1LI8fP6ZNmzacOHECS0tLfH19+eyzz9TbGzRoQI0aNbS22GTXrl3x8fHB1tY23baXK8nr07pFImNSCRJ6z8bGhgMHDqQb7Ovv70/jxo11NgtLvJ2xsTH37t1740rVoaGhFClSRC+6oHTpm2++ydR+y5cvz+Ek6W3evJkOHTrQsGFDateujUql4vjx4xw8eJANGzZoVEK0JTo6GktLSwwNDTXKIyIisLS0xNjYWCs5DA0Nefjw4TsvRSPdZPpNusPEG4WEhKBSqXRyMclXpaamZtjXb2RkRGpqqg4SiczQx0HI+kgXlZvMatu2LX/99RezZ8/Gz89PfT0zf39/nY3Je9O1Al+doakNL9sPpJLzYZOWIKEhOTmZCRMmMHfuXOLi4oC0aeD9+vVj3LhxOhl42KpVK6Kioli3bp36QpIPHjygS5cu2NnZsXXrVq1nEu/2ejfP6xISEtizZ490F+ihzF7qwdraOoeT6C8DAwMePXqk9TGJIntJJUho6NmzJ1u3bmXixInUrFkTgD///JPx48fTqlUrFi9erPVMISEhtGrVikuXLuHi4oJKpSI4OJhy5cqxbds2nbdUiYzpczePeDsDA4NMDc7OzRVYAwMDbGxs3vk8RUREaCmR+DekEiQ02NjYsH79epo1a6ZRvnv3bjp27Eh0dLSOksH+/fu5evWqukleFysOC5EbHD16VP1vRVFo3rw5v/32GwULFtTYr27dutqOpjcMDAzw8fF5Y/fcS5mZkSh0RypBQoOTkxNHjhxRz8J6KSgoiI8//pjHjx/rKJkQQlesrKwIDAzE3d1d11H0hoGBAWFhYTg6Ouo6isgCGRgtNPTp04cff/yR5cuXq8dyJCQkMHnyZPr27auzXP7+/hw5coTw8PB0g6F1sXaRECJ305e1nETWSCVIaAgICODgwYMUKlSIChUqAGnX7ElMTKRBgwa0adNGva+21i2ZMmUKo0ePpmTJkjg5OWm8+cgbkRBCF6QT5b9BKkFCg62tLW3bttUoc3Fx0VGaNHPmzGHZsmV4e3vrNIcQuZl84dAky3P8N8iYIKGmKArBwcE4ODhgbm6u6zhq+fPn548//qB48eK6jiJErvBqiy/o1yrWQmQnA10HEPpDURSKFy/OgwcPdB1Fw6BBg1iwYIGuYwiRa9jY2GjcvvjiCwoUKJCuXIgPnbQECQ1lypRh6dKl1KhRQ9dR1FJTU2nRogXXr1/Hw8Mj3YKN8m1UCCHEvyEtQULDzz//zLBhw7h06ZKuo6j169ePw4cPU6JECfLmzSvfRoUQQmQLaQkSGuzs7Hj27BnJyckYGxtjZmamsV0Xq59aWVmxfv16WrRoofVzCyGE+O+S2WFCg4+Pj64jpGNvb0/RokV1HUMIIcR/jLQECb23fPly9uzZw/Lly/Vq1poQQogPm1SCBDExMeqrQb/r6tG6uGq0p6cnt27dQlEU3Nzc0g2MPnfunNYzCSGE+PBJd5jAzs6Ohw8f4ujoiK2tbYaLoimKgkql0slVo1u3bq31cwohhPjvk0qQ4NChQ9jb2wNw+PDhN+4XEBCgrUgaxo0bp5PzCiGE+G+T7jDxVtHR0axZs4bffvuNwMBAnbQEvXT27FmCgoJQqVR4eHjg6empsyxCCCE+fNISJDJ06NAhli1bxpYtW3B1daVt27YsXbpUJ1nCw8Pp2LEjR44cwdbWFkVRiI6OxsvLi/Xr1+Pg4KCTXEIIIT5ssliiULt//z6TJk3C3d2dTp06YWdnR1JSEps3b2bSpEk6a3np168fMTExXL58mYiICCIjI7l06RIxMTH0799fJ5mEEEJ8+KQ7TADQvHlzjh8/TsuWLenSpQtNmzbF0NAQIyMjAgMD8fDw0Fk2GxsbDhw4QNWqVTXK/f39ady4MVFRUboJJoQQ4oMm3WECgH379tG/f3969eqld1drT01NTTctHsDIyIjU1FQdJBJCCPFfIN1hAoBjx44RGxtLlSpVqF69OvPnz+fx48e6jgVA/fr1GTBgAKGhoeqyBw8eMGjQIBo0aKDDZEIIIT5k0h0mNDx79oz169ezbNky/P39SUlJYdasWXTt2hUrKyudZAoJCaFVq1ZcunQJFxcXVCoVwcHBlCtXjm3btlGoUCGd5BJCCPFhk0qQeKNr166xdOlSVq1aRVRUFI0aNWL79u06y7N//36uXr2Koih4eHjQsGFDnWURQgjx4ZNKkHinlJQUduzYwbJly3RSCVq5ciUdOnTAxMREozwxMZH169fz1VdfaT2TEEKID59UgoTeMzQ0VF/W41VPnz7F0dFRpws4CiGE+HDJwGih915et+x19+/fx8bGRgeJhBBC/BfIFHmhtzw9PVGpVKhUKho0aECePP/8uaakpHDnzh2aNm2qw4RCCCE+ZFIJEnrr5dXjz58/T5MmTbC0tFRvMzY2xs3NjbZt2+oonRBCiA+djAkSes/X15cOHTpgamqq6yhCCCH+Q6QSJIQQQohcSbrDhN4zMDDIcGD0SzI7TAghxL8hlSCh97Zs2aJRCUpKSiIgIABfX18mTJigw2RCCCE+ZNIdJj5Ya9eu5ffff2fbtm26jiKEEOIDJJUg8cG6desW5cuXJz4+XtdRhBBCfIBksUTxQXr+/Dnz5s2Ti6cKIYT412RMkNB7dnZ2GmOCFEUhNjYWMzMz1qxZo8NkQgghPmRSCRJ6z8fHR+O+gYEBDg4OVK9enXv37ukmlBBCiA+ejAkSH5zo6GjWrFnD0qVLOX/+vEyRF0II8a/ImCDxwTh06BBffPEF+fPnZ968eTRr1owzZ87oOpYQQogPlHSHCb12//59VqxYwbJly4iPj6d9+/YkJSWxefNmPDw8dB1PCCHEB0xagoTeat68OR4eHly5coV58+YRGhrKvHnzdB1LCCHEf4S0BAm9tW/fPvr370+vXr0oXry4ruMIIYT4j5GWIKG3jh07RmxsLFWqVKF69erMnz+fx48f6zqWEEKI/wiZHSb03rNnz1i/fj3Lli3D39+flJQUZs2aRdeuXbGystJ1PCGEEB8oqQSJD8q1a9dYunQpq1atIioqikaNGrF9+3ZdxxJCCPEBkkqQ+CClpKSwY8cOli1bJpUgIYQQ/4pUgoQQQgiRK8nAaCGEEELkSlIJEkIIIUSuJJUgIYQQQuRKUgkSQgghRK4klSAhRI4ZP348FStWVN/39vamdevWWs9x9+5dVCoV58+ff+M+bm5u+Pj4ZPqYK1aswNbWNsvZVCoVfn5+WT6OEOL9SSVIiFzG29sblUqFSqXCyMgId3d3hg4dSnx8fI6fe86cOaxYsSJT+2am4iKEEFkh1w4TIhdq2rQpy5cvJykpiWPHjtG9e3fi4+NZtGhRun2TkpIwMjLKlvPa2Nhky3GEECI7SEuQELmQiYkJzs7OuLi40LlzZ7p06aLuknnZhbVs2TLc3d0xMTFBURSio6P59ttvcXR0xNramvr16xMYGKhx3J9++gknJyesrKzo1q0bL1680Nj+endYamoq06ZNo1ixYpiYmFC4cGEmT54MQJEiRQDw9PREpVJRr1499eOWL19O6dKlMTU1pVSpUixcuFDjPP7+/nh6emJqakqVKlUICAh47+do1qxZlCtXDgsLC1xcXOjduzdxcXHp9vPz86NEiRKYmprSqFEjQkJCNLbv2LGDypUrY2pqiru7OxMmTCA5Ofm98wghsp9UgoQQmJmZkZSUpL5/8+ZNNmzYwObNm9XdUS1atCAsLIxdu3Zx9uxZKlWqRIMGDYiIiABgw4YNjBs3jsmTJ3PmzBny58+frnLyupEjRzJt2jTGjBnDlStXWLt2LU5OTkBaRQbgwIEDPHz4kC1btgDw66+/MmrUKCZPnkxQUBBTpkxhzJgx+Pr6AhAfH0/Lli0pWbIkZ8+eZfz48QwdOvS9nxMDAwPmzp3LpUuX8PX15dChQ3z//fca+zx79ozJkyfj6+vLiRMniImJoWPHjurte/fu5YsvvqB///5cuXKFJUuWsGLFCnVFTwihY4oQIlf5+uuvlVatWqnv//XXX0revHmV9u3bK4qiKOPGjVOMjIyU8PBw9T4HDx5UrK2tlRcvXmgcq2jRosqSJUsURVGUmjVrKj179tTYXr16daVChQoZnjsmJkYxMTFRfv311wxz3rlzRwGUgIAAjXIXFxdl7dq1GmU//vijUrNmTUVRFGXJkiWKvb29Eh8fr96+aNGiDI/1KldXV2X27Nlv3L5hwwYlb9686vvLly9XAOXUqVPqsqCgIAVQ/vrrL0VRFOWjjz5SpkyZonGcVatWKfnz51ffB5StW7e+8bxCiJwjY4KEyIV27tyJpaUlycnJJCUl0apVK+bNm6fe7urqioODg/r+2bNniYuLI2/evBrHef78Obdu3QIgKCiInj17amyvWbMmhw8fzjBDUFAQCQkJNGjQINO5Hz9+TEhICN26daNHjx7q8uTkZPV4o6CgICpUqIC5ublGjvd1+PBhpkyZwpUrV4iJiSE5OZkXL14QHx+PhYUFAHny5KFKlSrqx5QqVQpbW1uCgoKoVq0aZ8+e5fTp0xotPykpKbx48YJnz55pZBRCaJ9UgoTIhby8vFi0aBFGRkYUKFAg3cDnlx/yL6WmppI/f36OHDmS7lj/dpq4mZnZez8mNTUVSOsSq169usY2Q0NDAJRsuBzivXv3aN68OT179uTHH3/E3t6e48eP061bN41uQ0ib4v66l2WpqalMmDCBNm3apNvH1NQ0yzmFEFkjlSAhciELCwuKFSuW6f0rVapEWFgYefLkwc3NLcN9SpcuzalTp/jqq6/UZadOnXrjMYsXL46ZmRkHDx6ke/fu6bYbGxsDaS0nLzk5OVGwYEFu375Nly5dMjyuh4cHq1at4vnz5+qK1ttyZOTMmTMkJyczc+ZMDAzShk5u2LAh3X7JycmcOXOGatWqAXDt2jWioqIoVaoUkPa8Xbt27b2eayGE9kglSAjxTg0bNqRmzZq0bt2aadOmUbJkSUJDQ9m1axetW7emSpUqDBgwgK+//poqVapQp04d1qxZw+XLl3F3d8/wmKampgwfPpzvv/8eY2NjateuzePHj7l8+TLdunXD0dERMzMz9uzZQ6FChTA1NcXGxobx48fTv39/rK2tadasGQkJCZw5c4bIyEgGDx5M586dGTVqFN26dWP06NHcvXuXGTNmvNfPW7RoUZKTk5k3bx6ffPIJJ06cYPHixen2MzIyol+/fsydOxcjIyP69u1LjRo11JWisWPH0rJlS1xcXGjXrh0GBgZcuHCBixcvMmnSpPf/RQghspXMDhNCvJNKpWLXrl18/PHHdO3alRIlStCxY0fu3r2rns3VoUMHxo4dy/Dhw6lcuTL37t2jV69ebz3umDFjGDJkCGPHjqV06dJ06NCB8PBwIG28zdy5c1myZAkFChSgVatWAHTv3p3ffvuNFStWUK5cOerWrcuKFSvUU+otLS3ZsWMHV65cwdPTk1GjRjFt2rT3+nkrVqzIrFmzmDZtGmXLlmXNmjVMnTo13X7m5uYMHz6czp07U7NmTczMzFi/fr16e5MmTdi5cyf79++natWq1KhRg1mzZuHq6vpeeYQQOUOlZEcHuhBCCCHEB0ZagoQQQgiRK0klSAghhBC5klSChBBCCJErSSVICCGEELmSVIKEEEIIkStJJUgIIYQQuZJUgoQQQgiRK0klSAghhBC5klSChBBCCJErSSVICCGEELmSVIKEEEIIkSv9H+NuRrHIvcVnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWEAAAPdCAYAAADrsapyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hcZ3k+/vucM31m+6521aslWXLDxnZsU4zpBIIJ3Zj6hZCCIQnF4UtIaAkQICGBkJDEgENIKIEQ2jcQTDPgAu5FtiVZvW/fnX7K74/3t9eq3M9qZe1oZfv+XJcu8LOzp8yc85z3vDM7t5ckSQIRERERERERERERaQl/vjdARERERERERERE5LFMk7AiIiIiIiIiIiIiLaRJWBEREREREREREZEW0iSsiIiIiIiIiIiISAtpElZERERERERERESkhTQJKyIiIiIiIiIiItJCmoQVERERERERERERaSFNwoqIiIiIiIiIiIi0kCZhRURERERERERERFpIk7AiIvKIrVgBfPKT9s+3bwc8D7jzzlOzPSLyOKRGJCJzaC5bxuteB1x55ckvR0REHhs0Cdtinjfzv9e9bnbLGR8H3vMeYP16IJcDBgaAZzwD+MY3gCSZ3TJ+8hO3ztHRR7gzIvKoMRe9p1wGrr0WWLXK9Z2+PuDyy4HvfGf227F0KbBvH3DWWY90T0TkUUuNSETm0FzdVwHA7t1AJuPurY6mliEic20u+tf73sd/94c/bPXWy1xKzfcGPNbt2zf9/7/yFeDP/gx48MHpWj5//GWMjgJPehIwNgZ86EPAhRcCqRTw058C73oXcMUVQGfnXG+5iDyazUXv+d3fBW69Ffj0p4ENG4ChIeCXv3T/O1tB4N40EpHHITUiEZlDc9FSpnzhC8DLXgb87GfAL34BXHbZ9M+O1zKSBIgidz8mIjIbc9W/Nm48dtK1u/vYxzUa7o0mOf3ok7AtNjAw/a+jw71TcXTteP7v/3V/FnPLLcBrX+vuQdauBd70JvdnMqWSe9y//RvwxCcCbW1u2VddBRw86H62fTvwtKe5/9/VdeLvFovIo8tc9J5vf9v1n+c9z/217wUXANdc4/rQ4SoV4A1vcL1n2TLgn/5p+mdH/0nf1Cfyv/td4Nxz3QfbLr4YuOeeudlvETmNqBGJyByai5YCuEnUz38eePWr3f3Sddcd+XOrZXz/++5eK5sFbrzRfSrtvPOAz37WfXq2UABe+tKZ/+rwf/7HfbimsxPo6QGe/3xg69Zj1/2Nb7h7t0LBtambbjpyOb/8JfCUp7iJm6VLgbe+1f3hgIicnuaqf6VSR/7ewICbbJ366pMPfxhYtMjNFwFuaHPFFa5X9PQAv/M7wOTk9PLC0PWPqZ507bVuiKWvUWkdTcLOs6mL+vbt/OdxDHz5y8CrXuVOpqOVStPvwjYawAc/CNx1F/DNbwLbtk1PtC5dCnz96+7/P/igeyfmb/92bvdFRB49jtd7AHdR/973gImJmZf1iU+4m5I77gB+//eB3/s94IEHZv6dd74T+PjHgV/9CliwAPit3wKazRPdCxF5VFMjEpE5NJuWAgA//rF73+YZz3ATsV/96vFbDOD+AvHDHwY2bQLOOcfVtmxxv//tb7sJ1jvvBP7gD+xllMvAH/+xazs33AD4PvCiF7l7vsO95z3AO97hlrd2LfDKV7rJEsBNqjz72cBv/zZw993uU3U//znwlrccfx9E5PQ02/41kxtucP3pf//XfWtTpQI85znuQ3i/+hXwta+5T9Ee3is++lHgS19yb0z94hfuazC/+c2T3BmZkSZh51mhAKxbB6TT/OeDg8DICP++oqO94Q3Ac5/rvjbtN34D+Lu/A/7f/3PvdATB9MfUFyw4sXdbROSx53i9B3AfJPvlL927ohdeCPzRH7mL89Ge9zw357FmjXv3tLfXDSRm8ud/DjzzmcDZZwPXXw8cOAD813+d1C6JyKONGpGIzKHZtBTAffL1Fa9w90cbN7q28ZWvHH/5H/iAaxmrV7uWBAC1mmsf553nPpn6qU+5D9Ds38+X8eIXu8nTM85wv3PddW5S9f77j3zcO94B/OZvugnY978f2LHDTfgCwMc+5j7B+4d/6JZz6aXuvu9f/9Vtj4g8+sy2f91zj/sg3tS/iy6a/lmxCPzLv7i+dtZZbnK1WnW94ayz3CdiP/1p4ItfdEMewPWsd7/bvRm0fr37ub7qsrU0CTvPLrrIfVBj8WL+86nQLc87/rLuuAN44QuB5cvdX+Ndfrmr79w5J5sqIo8hx+s9gLuZePhh967qi18M3Hcf8OQnu0/cH27q0yDA9J/WTH0ViuWSS6b/f3e3G3Rs2nTi+yEij2JqRCIyh2bTUkZH3Z/6X331dO3qq4HPfe74y3/iE4+tLVsGLFky/d+XXOI+1Xr4dz0ebutWN4G6ahXQ3g6sXOnqR9+vHd7SFi50/zvV0m67zX2n7eETMc9+tlvvtm3H3w8ROf3Mpn8Bbqhy553T/6b+2hlw7ykf/j2wmza5rzMpFqdrl1023aPGxtxk7OETuUHgvvlJWkdfJ36a6+tzHx8/3j1BuQw861nu37/9m/u9nTvdBbnRODXbKiKPPem0m+948pOBP/kTFw74gQ+4D5pNXeSPfsfW8479s7rZmM2bTSLyOKRGJCJz5N//3X1a9OKLp2tJ4trF/fe77A3L4RMZlqkWYrWSF7zAfU3cP/+z+6q5OHafUDv6fu3wlja1rKmWFsfAm9/svsfxaMuWHX8bReTRK5Nxn95nju5RSWL3osPrRz9m6oOA0hr6JOxpzveBl7/cfZR8795jf14uu+8HeuAB99UFH/mIu0dZv/7YD4BM3adEUeu3W0QemzZscD3nZP/c7eabp///yAjw0EOz+9oVERE1IhF5pK67Dnj724/8JNldd7kQrNl8GvZoO3ceeY92003u/m0qFOdwQ0PugzV/+qfA058OnHmmaz0n6vzz3R8FrFlz7D+loYvIlA0bXI87PLTvF7+Y7lEdHUB/P3DrrdM/jyL3F9bSOpqEnWe33urG+3v22I/5y79075hefLH7Po/77wc2b3YDhfPOc9/5umyZu+h+6lPur/a+9a1j/1Jv+XL3Lsd3vgMcOnRkKp6IPL7MpvdcfrlL/L3tNvcl8d/7ngspf9rT3J/QnYwPfMD9dfG997oAwd5epXCKPO6oEYnIHDpeS7nzTuD224E3vtF9+vTwf698pbvPOtFsvlzOJYnfdRdw443u06kve5n7RpSjdXW575L9p39y3+/6ox+5kK4Tde21brL3D/7A7dPmze7e75prTnxZInJ6mM2Q6ES96lXTPeree10o4TXXuEDC/n73mGuucYGD//3f7isK3vY29+aQ/jCodTQJO88qFXewz3TB7+pyH9a4+mr3F3hPeIL7tOt//If7YvaODvf1A1/4gku827DBfSL24x8/cjmLF7svdv+TP3EnnRI0RR6/ZtN7nv1sFzbxrGe5T2tcc42rffWrJ7/+j3zEXeQvuADYt8/dPOjTGyKPM2pEIjKHjtdSrrvO3SexD7xfeSUwPAx8+9snts41a1zQ1vOe59rUWWcBn/kMf6zvu9Cu225zj/ujP3L3cifqnHOAn/7UTb4++cnu3vC9753+7lgRefSZzZDoRBUKwPe/73rbhRcCL3mJ+xT+pz89/Zhrr3VvQr3mNe47rae+YzqXm7vtkCN5SaJvfBARkVPjJz9xH2AbGVHypojMEzUiEZkD73sf8M1vuk+jiog8FsSxe8/7ZS879i+rZW4omEtERERERERERORxZMcO4Ac/AJ76VKBed5+S3bYNuOqq+d6yxy59HYGIiIiIiIiIiMjjiO+7r7W88ELgssuAe+4BfvhD92lYaQ19HYGIiIiIiIiIiIhIC+mTsCIiIiIiIiIiIiItpElYERF5xN73PuC882Z+zOWXA3/4h63fFhGROeV5LnXHsn27e8xUKs9PfuL+e3S05ZsmIq01V2MXtQURETmcJmFb7HWvcxdezwPSaWDVKuAd7wDK5RNf1te/7gYEHR1AqQSccw7wgQ8Aw8OzX8aKFcAnP3ni6xaRR5e56j1f/zpw8cWu77S1ARs3Am9/+4kt4xvfULqmyGlpLgcpAPCsZwFBANx88yP7/eNNep5uli4F9u0DzjprvrdE5HHhVLYsjV1EZK7NRQ+bev/36H9XX92qrZa5pknYU+A5z3Fj9IcfBj70IeAzn3En24l4z3uAl7/cfWHy//t/wL33Ap/4BHDXXcAXv9ia7RaRR7eT7T0//CHwilcAL3kJcOutwG23AX/xF0CjcWLb0d3tJnBF5DQ0F4MUANi5E7jpJuAtbwGuu27ut/N0FATAwACQSs33log8bpyqlnW8scuJjoVERIC562E//KFbztS/v//7Yx+TJEAYnvw2y9zSJOwpkM26MfrSpcBVVwGvetWJfdDj1luBv/xLN+n6sY8Bl17qPtH6zGe6T6m99rXucVu3Ai98IdDf7z4pe+GF7uSccvnlwI4dwB/90fQ7JiLy2HWyvec73wGe9CTgne8E1q0D1q4FrrwS+NSnjn3sF7/o+lJHh5u4nZiY/tnRf9K3YoX7dMlVV7letWgRX6aInAIn2yimfP7zwPOfD/ze7wFf+cqxH+tgf4pz3nnuO02mfg4AL3qRG6BM/TcA/MM/AKtXA5mMa0ZHv/vsecBnP+vWXyi4SN+bbgK2bHENqFgELrnEDZQOd7zlAu7O5rnPBfJ5YOVK4Gtfm/7Z0V9HwPzyl8BTnuJ+f+lS4K1vfeQf2xORU9ay2NjlQx9yn2Tr6ADe9KbpFvDlL7v7s1zO/cXQT35ir3doCHjlK4ElS1y7Ovts4D/+49h1v/WtwLve5SaDBwamW+WUsTHgd34HWLAAaG8HrrjCfThHRE5vc9XDenrccqb+dXRMf/3J978PPPGJbl033gjU666nLFjg+tSTngT86ldHLu9b3wLOOMMNV572NOD66/VVKq2iSdh5kM8Dzeb0f69YceyF9XBf+pKbqPj93+c/7+x0/zs5CTzveW7i9Y47gGc/G3jBC9w7vYD7s5olS9xXGEy9YyIijx8n2nsGBoD77nOfvJ/J1q1u8PCd77h/P/0p8JGPzPw7H/uY+0qV228H3v1u9+bQ//7vLHdERFrnRBsF4D5q8fnPu7+FW7/evWPz1a+e2Hqn7gY+/3k3QJn67//6L+Btb3Pfg3LvvcCb3wy8/vXAj3985O9/8IPAa17jJkTXr3d3Nm9+s2swv/61e8xb3jL9+Nku973vBV78Yje7cfXVbvZk06bZ7dM997jB2G//NnD33W6m5+c/P3I7ROSknMqW9bGPuW8fue021xqmvPOdrpXccYebjP2t33KTrUytBlxwgRsv3Xuvm0h99auBW2458nHXX+/eP7rlFuCv/srdv02Nk5IE+M3fBPbvB773Pbc9558PPP3pJ/Y1dSIy/x5JDzued70L+PCH3XDlnHPcf3/9666v3H47sGaNG55M9Yvt291fPl55pRtGvfnN7i+xpTU0CXuK3Xor8O//7i6SU1avBnp77d/ZvNl9X0g6PfOyzz3XnTBnn+3exfjQh9zvfetb7ufd3e4v59rapt8xEZHHh0fSe665xn2i/uyz3YDgFa8APvc5927q4eIY+MIX3I3Jk5/sbiZuuGHm7bnsMuBP/sTd+Fxzjbvw/83fPNK9E5E58UgaBeDe/a1U3IgecDMbJ/qVBH197n87O90AZeq/P/5x99Gz3/991zD++I/dpObHP37k77/+9cDLXuYec+217o7iVa9y23TmmW7C9fCPp812uS99KfDGN7rHfPCD7qMls/3o/sc+5iaD//AP3cDs0kuBv/s74F//1c3EiMhJOdUt64or3J8Nr1nj/k15y1vcezVnnuk+YN/RYS9v8WK3jPPOc/dp11zjtuPwD9kDbuLkz//ctY7XvMa1nqmx1Y9/7N7j+drXXP2MM1zr6uwE/vM/j78fInJ6eKQ9DHBDilJp+t8dd0z/7AMfcH81vXq1++TrP/yDG5I897nAhg3AP/+zm/yd6lP/+I/uD4I+9jH3v694hRsiSWvoS6xOge98x50YYeje5XjhC48cvx9vsiJJZvfVAeUy8P73u/Xt3evWV61OfxJWRB5fTrb3FIvAd7/rPun64x+74Iq3vx342791f+lbKLjHrVhx5PemLVwIHDw487IvueTY/1ZooMg8ONlGAbhR/MtfPv3dqK98pfto2IMPutH8ydi0yX1U7HCXXeYa0eHOOWf6//f3u/89++wja7UaMD7u/nZ3tstlzWqmrx843G23ua9E+NKXpmtJ4t652rbNzdiIyAmZz5b1xCfy+uFtIpVyj7M+MB9F7q+FvvIVYM8e98Z2ve7GXIc7vKUBR46tbrvN/QVkT8+Rj6lWj/3WFRE5vcxFDwNcDzl8GLF0qbs/A47sVVu3uvVcdtl0LZ0GLrpouk89+KD74M3hLrpo9vskJ0aTsKfA057m3n1Ip913Hx7vE61HW7vW/fVasznz777zne77Pz7+cffubD7vPl2mL44XeXw62d4zZfVq9++Nb3R/mrJ2rbvwv/717udHL9fz3BzDidL3VIvMg5NtFMPD7vtImk23nClR5D46/9GPuv/2fTcBebjD//5uJkc3B/bu9OHbPfUzVju8Oc1mubPZHkscuz9Reutbj/3ZsmWzW4aIHOFUtSzm6InSmVht4hOfcH/588lPuveJikX3Yfmj79dmGlvFsZuUZd89O/U1dSJyepqr+7OlS4/8RP7hDu9VU0OvmYY8bPhz9JBN5o6+juAUKBbdCbJ8+SM7ya66yr3b+ZnP8J9PfVnyjTe6j42/6EXuoj4w4P4a73CZjBtkiMhj38n2HmbFCvcJ2JPNlbn55mP/e/36k1umiDwCJ9sovvQl94Xzd93lPiE69e+Tn3RfPjYVy9vXd+SX0Y+Pu0+DHi6dPnaQcuaZ7p3ow/3ylyf/KdLZLvdkmtX557sv1p762+XD/2Uyj3zbRR7HTlXLOhGHt4kwdJ9UtdrEjTe6T75dfbX7KrlVq9xXz52I88933webSh3bWmbzZ8wiMn9acX82k6khx+FDnmbTfV3+1JBn/fpjg7qmvk5f5p4mYU8DT3868OlP2z+/+GL3Zcpvf7v735tuAnbscB9Vf+lL3YABcCfYN77hBhJ33eUmb4/+NNqKFcDPfub+/GVwsFV7JCKPBsfrPe97n+s5P/mJmyu54w7gDW9wF+5nPvPk1v2LX7igiYceAv7+7933mr3tbSe3TBFpgeM1iuuuc392c9ZZR/57wxvcu8Tf/a573BVXAF/8opuBuPde4LWvdV9Uf7gVK9zgZv9+YGTE1d75Tvel0//4j26m4q//2g123vGOk9uv2S73a19zH4976CH3BY233jr7YK1rr3WDtj/4Azc427zZfVH/Ndec3LaLiGmuWtaJ+Pu/d1l/DzzgTveREbc8Zs0aF7D1y1+6PwV+85tdyzsRz3iG+wqEK690fwW5fbtb3p/+qSZORB7tjtfDTlSxCPze77lhz//8D3D//cCb3uS+F/v//B/3mDe/2fWva691w52vftUNkQD9pWIraBL2NLB16/EnRD/6Ufelzbfc4r68feNGlyFxzjnuPgZwf9rS1eW+pPkFL3CPO//8I5fzgQ+4C/Xq1dOZFyLy+HS83vPUpwIPP+wCIdavd1/mvn8/8IMfnPzXPL797e6TIk94gsu6+cQnpgMyROQ0MlOjuO02967vi1987M/a2oBnPWs69eHd7wae8hTg+c8Hnvc8N3uwevWRv/OJT7jZiaVLXXMA3OP+9m9dWsTGjcBnP+tizS+//OT2a7bLff/7gS9/2Q24rr/efYxuw4bZreOcc4Cf/tRNvj75yW6f3vte93fEItISc9WyTsRHPuLu1c49173P9N//bX8i9b3vdfdnz362azcDA64dnQjPA773PddS3/AG9zVRr3iFu8eb+kpsEXl0ms3c0In6yEdc33v1q13/2bLFvYHT1eV+vnKlC/X7xjfc0OUf/sF9BR0AZLNzuy0CeEmib3sQEZFTZ8UK9/1nf/iH87whIiIiIo/Q9u1u8uKOO4DzzpvvrRERmTt/8Rfuj4V27ZrvLXnsUTCXiIiIiIiIiIjI49BnPgNceCHQ0+O+Nu5jH5v9ty/JidEkrIiIiIiIiIiIyOPQ5s3Ahz4EDA8Dy5a5r45797vne6sem/R1BCIiIiIiIiIiIiItpGAuERERERERERERkRbSJKyIiIiIiIiIiIhIC2kSVkRERERERERERKSFNAkrIiIiIiIiIiIi0kKp2T7w8390Pq17SUzrmTRftOfzed9Go26uO4yafB2ZDK1HMd+mJOYZZJ4f0bof8O1JmkW+HPDlAEA6U6P1wHgJPJ9vaxSHtN4M+T7Hscc3yOPrDSPj8QDqxrKs34iNY8Pz+G80Gvx1jiLjOTKW78/wOjSMY6PMn1ZUGnxZH/vqw+Y6pHUGBwdpPQz5C2gda48m87oPVmyjUTcfbrzdlxi/4Vu/MNNKPKvfGNcDo3N5xnuTc5lheaKvqbXu/v7+udgceQQ+/+Nt/AcR70VDh/bTer3GxwarVq8x193Z0U7r6YAfu5k0H8xkrMcb47SUZ4xLwiqtl4ppWgeAdMDPgZRRD4wB2cjIMK23tbXx9ab5NqU8vnzPt8/VMG7QuvH0mXyP/0KlXKH1VIqPiXK5HK03Gnw7ASA0xt75XJ7WPeN16Grnj5fW+pfrPkPrpd61tJ4P+H1Te1uJ1ifq9ni6PD5E675v3I8YF++UccLkU1lazwXGratx32TepADmeCKKjf02Hh8bjzf32TiHfeP8eiTjQM/o1571+lj7bC6fb1M2y1+3jM/rAICE/8zL8OejMrSJ1p/6nJfY65CWuuKZF9B6uo2PVw4a1+7h4VFar0/wsRIAdA3wdaS6e2jdSxsXaWNM1Jzg8xM7b7+f1tPtvM8uPWMhXy+AfIqfT3GTj1mikD++q4+PAxau5M9FYPSi2BjLptJ83wBgfJg/T4f2H6T1pjGvdMlF62k9qfNt+sEPfkbri1cspvV82u5Fe3fxsXqQ59fItiIfa/7wyzeY65iiT8KKiIiIiIiIiIiItJAmYUVERERERERERERaSJOwIiIiIiIiIiIiIi2kSVgRERERERERERGRFpp1MFfDDCvhgQwwApCy4KFWPowULACplBGcZU0hW9/NbnwRc90ILQhjvk0pIzQmsHcBKWNbvZh/iTFCHpZghU7FxrY2PP4FzVHAv5S4YSwHABoR3wnP+DJ3zwgRyxmvQ8oIp/BTRhhI03juPCNlC0BiPH9WSE9gfEm3zI9gppPsMep0DBezznkzusoIt4mtxIxkhtc5MQK1jFAOD/xaZG/toyeYS+ZPqcCvoX7Ch1X1Mn983ODhS7mMfYwU83wdRq6DOW7IGgOTfMa4FhvnUj2yls/HHwCQMcYBVg5WKmWEixmhY74VSmPsQ9YIep1pCFCu8DGI9StWmGxijH9948lIG0EaVuhYs24H31rjrrwRroPT8Hr0eBYn/BwLgy5ab6b5PVgU8NARPz1DMFd1ktaTqEzrxuGJesLX0TQCpGpG3zJyvNBo2oE+vjGmrFb4va01BrXOPStw2Pd5PbHC/mZoRFZfCUNjnGYMiTwjnNAKEevq4sdYNs+DanwrOA1AbI3fskYo0SQ/XmX+pEq8F+X7+HFSMq5LwyMjtN7dz48rABhYzQOvRmvW+N8caNBypcZ7XWTM4XS0d9B63wJ7H1IJP4/Hx4x5n4BvU6m3QOtNY5xWr/J61OS9KFucaQzAe0izzp+nVIYHevYY4bOVyTFeH+fj6EN7eXhk3uiZABAY95/F9k5abxjP32xohklERERERERERESkhTQJKyIiIiIiIiIiItJCmoQVERERERERERERaSFNwoqIiIiIiIiIiIi0kCZhRURERERERERERFqIx8ARiZF0j4Sn2yURf7wX8dSx2EhhA4Agz+eKrZRbK0A9NhK9M0aqZZjwetw09sFYPmCnVHpG6rWfGPscGOm6AU8lrEY8LnT/EE+qKzfs9MrJSf47gZFs2pYz0ow9/rq1F3hKXj7Lj6XYN1JErdRDzJBsajy+GSuV/HRipcQ/ltPjT8W+eVbitbVuM17XWozRlI33AetN43oDIGVFLEfG9cBISbdZaarz57F8fD9apTx+jPowxhkBP67SPn981rfPgZy1rICfgPUqT44NAj4+yKX4tbhZ5ynjPvi2JqGdSp54fPgZgR/rmTTfJt86v41xiWf0HCvluFLhzx0ADB06ROv9vTwN2vP56xNk+HMRGM+F1dPSxscqUsZ6AaBujNVTxrHUNHvzrG8nZA75CX89IuP4j4zxd+TxczXXZr+uPcv7+TaN8XTzUoWneTdq/D4yMtLW445OWm/L8GPWeo4AwPf5SdOo8/uLKObPXy7He6nZnoxrujUWM8dosPchNM5VYxfM8Vsmxcdc+TzvyZ7RtzzwHgsAsXHdjK3Pis3wfMj8SBmJ9uksn7cotbfRenGYP75/Sbe57nxbkdbHGrznpIxjGr4xLqlW+XKMw7No9K5mOEMvSvj5VCuP83qD1+Owlz9+jPf44f2jtB5k+HPUt4xvJwCkjB5cL/N+msvz1y2X5euOavxeslbhvaVR4b2ov8c+lnLtJVpvGr1o34695rKOR5+EFREREREREREREWkhTcKKiIiIiIiIiIiItJAmYUVERERERERERERaSJOwIiIiIiIiIiIiIi2kSVgRERERERERERGRFpp1nGkq4umVCHjymG8kzWYDIxkuNUPSoZH86AfGHLKRRhlaSfdGcmw6wxPgBlaspfXx0UG+fACDQzxhN53iKYA+eNJmI+QvWdVI1du0g29TkuXJcM2AJ9UBQMNI+5scG6b1PQdHab2UNdIHjYS+Zf38Oepps5Kd7cPaM1JSjUA/M2FW5scjSY493Tyqku7N84LvQxLzXwiNON5myM+vzQ8/bG5S/8ACWo8bPH2zr5snlVvpm/Fp+Po8mo7vx4uMb6Q5h/w4DIxk6LTPz430DEnSfsTHE5m0kdAd8G1N+3xb00ZCcOzxx/sxHx+GNfv6mTXGGjXjPC4U+BgnMMZvZgS4cX6Xazw5+LbbbufLAdCs8tehq/1CWs9m+Zg1MHbBS4x9iPnz6lup5DOMY+KYj4kSYx2J8XiZHyF4wrgPPm6OA35M1ROeOh0YdQAopni/aS8Y19bbf0XrjUGeYL7wrHW07h3i9yJ1j/eUknWCAZiolmk9Z5xL2YTvm9/DE7X9Bu/j1u1rvcD3LdW0xyVBk+/fRJH30uzYGF/H0g20XunsoPU45D0zMnpyLubHJAB4Rl/2I/47QaTPkJ1uOvr42HxilM8R5EoFWm/r4udS50I70X7SmKJK+/x8zRnzO01j3BAa44NMhi/fC/nxPLKf9zoAyFk9YXKC/8Dj1+hCwHtIW5E/r3GTr7hp3HcEM8yxxCHvd77Rg9Np/vwFPr/u5LN83waWLqL1JUuX0/rCxfxYBYC6MSG0e/tuWq9UR8xlHY+6mIiIiIiIiIiIiEgLaRJWREREREREREREpIU0CSsiIiIiIiIiIiLSQpqEFREREREREREREWkhTcKKiIiIiIiIiIiItJAdcXYMI5U81cnrRqpaaKS9+r6duNow0oYzAU/mjCIr1dVIiDW2NZPmc9QXP+OZtH7bL2/iywewd3SI1sshfwnCiKd87th9iNa37dlD69nOhbS+pH8lrSdZnrQKAA0jCTVd6qP1sMZTAIcO7qX1QidPPtw9eYDWa0aKYX8bT9sDgEKaJ+5FTZ5y7J9+QemPa4mRoGrVHwup8ie6D9Zz8QjXTqtBmifWRgl/fNWILh0d48nEBwZ5mioA5Nt4b+xpM1KiPd7HPeM9SM8zEslP1Ayv26P/qJRMir+KifG6p62LScTPjQD2mMgzficNfn1rWinWsXF+t/Pz20t48i1iPkaLwxnOpYiPJybHR2m9ZKSG+0a/Cxv8OUql+ZhrtMLHAMPjvA4A+RTvIQ3jpWs0+fORyljXNf74KOKvQ2iMlRvGcwEAGSPpODHGV7Exvpb5YtybJfwg9I1zOAr5+YjA/qyOl/Cxds3j1+J0zK/dXi9Pqq5M8OO5ue0hWg89nnge89YBACinjePZOP4zTf48NXbx3gvjnPfA67US39igZvfSFH+aUB/gr091Px9ftXn8Xs7r6KX1yHiOmsa1Lu3bI5/Y6HWBz1+flG7OTjvZFD8HPKO+YIAn2o/XB/lyjGs3ANTH+DUu4xvzFjHva9b9U6NhjHGM7RkbHKH1fJH3QACo5fix3tnTSeulNt4rJhK+nIo1Dizw58gzBjLVMXtMlMkY91Vp/rwWSgVaz/q8l7cv4I9ff956vkHGsZfk7f7hG9e8Qp730/MvPcdc1vHok7AiIiIiIiIiIiIiLaRJWBEREREREREREZEW0iSsiIiIiIiIiIiISAtpElZERERERERERESkhTQJKyIiIiIiIiIiItJCmoQVERERERERERERaaHUbB9Y99tofaxSoPUorNN6Vymk9fYgMtedShJaj8MGrXv84Uhivm4/4HPRlcoIrf/oO/9N6wdG+T4DwIFJvo4de/g6duzbRetBrkTrUdBO68X2XlpPF/hyUrk8rQNA1uP7kPOLtD7YqNL6wiXLaL1WLdP6tm0HaH14rEbrgcf3DQBW9PGfpaOY1r2IHzMyP3zfo/Uk5vVTIbFWbfQhi+fxBflG3RLBfnwc8+M8MHpgo9Gk9UND47Q+XubnZLXO+3u5wnumn+XXFQAoV3nfLxX4Ex4ar0PGWP4JPt2PiPVay6NH1uPHdOTxa0ba5+des87PGR/2tSeJjd/x+JAu5fNlpQJ+HAYeP++TyBrjGOdezJcDABH4zyYneG/ZaT1PKd67koQ/30vbeW8ZOnSI1u+6+25aB4BzNm6k9dh4XusR7125JM2XE/PHVyu8nknxfQ6bFVoHgCDFn49myI+Zep0vqw0d5jqkdaKI96HYGNMm1mdvYn4ONxK7D0XG8dYxYfSPvn5azy9YTuthMsZXnOF9LukdoPVq2h6MpfYP8R8EAS2XjXukpL+H1tMxf75rMX/dim38fqoxYZ/DdaPfpPJ8lBMY47RUzwJa99L8dY6SLK23GcObAHw5ABB6vAd6Pq8D/PWR+TMxxs9Xz7jv2LVzB60X0/y4qhj3HQAQNXO0njGOn/LoKK37BX7OxCHvadb9WSbL19uzrJPWAaDYya+hhTZjTsPnvSVq8n7XnOTjN8+4iZ08OEzrY4eMnglgw4XraL1noIv/gtGas2n+ena28/5Y7OZzYNWIv27NGXpRV6mT15fy43JictJc1vHok7AiIiIiIiIiIiIiLaRJWBEREREREREREZEW0iSsiIiIiIiIiIiISAtpElZERERERERERESkhTQJKyIiIiIiIiIiItJCPGKSOFTlSYTDzU5a/9kvf0rrZ57Bk82etrHXXHdXwOPTYiMV1DdSLX0jJS9KeHqaZ0xRb9uxjdaHqzw5DQCSAk+GC0o89c7vmqD1vJGe16jxtMuGxxPg2rv469Be4nUAOLh/P62Pj/AEvTYjwTSX5+miO0cGaT3dxhM7D+3fSeulA/y5A4CBdr7uvJEqPVO6s5x65UqV/8BI9k0ZvSAxHh+k7MRV62eex5dlBE7CN9JyLT6MBRmpnJNGijgAJAnf1nyKH/+1Jk9G3meklB4c4fXY2IdmyLenMmGnTR4c5P1m9559tL7hjFW0vnrFEloPEn5dsZ47JMbrabxsM/3MOJTsY0DmTRDy8yw2kuj90Ei6HzMSf40UegBIfH5dCvL8PM4Y17GM1dOaZVqPrG2KjOWk7OM28fjzUS7zhOUDB/i6i+18DJUYycGJ0esak3z5OSOpGQAOGQnLt997N60Xs/x5WrOK96iUER1crxjjw5QxVq4b100AUWgkn1uh5DUroXqhuQ5pIeMUi2J+HYuNsY/1kZzIuM8CgLTHf5bdspnWa7fdSOvhhTy1Gz4/95KkQOuZCd7narB7aWnfKK0HWb7uuMj32Ut4qnrU5NvU1tNJ6+k9RvL4DAnc6f42/oNdfFkpo2fWDvG+FRT44+O1G/hyMvy58I37UQDIhPxAThljxMRelMyTiTI/z5o+f7G233kPrS9evojW24r2/ERnkfeExGgtY2N8jIOQn69xg98LlYxtWnnuMlrvXdPD1wsgCHgT9ozJqAM7+Fhp16bdtN7dxuehNp51Nq3/+r4dtD46aPeiYhufo/KNebx6nffTQifvabks70XFYo7W8wl/vBcZ10EAvZ19tH7PfbfT+oP3P2Qu63j0SVgRERERERERERGRFtIkrIiIiIiIiIiIiEgLaRJWREREREREREREpIU0CSsiIiIiIiIiIiLSQpqEFREREREREREREWkhHhPLHtixktYrQ3wet5nh6WLDFZ4OW2nwZDMAaM/wFN044Wl1VlJ6EPD0vFojT+uHjFS9wQkrza2b/wKArj6elFeOedJsL/g2BTleb6T5c1Qr8xTd2iRf7/J+O7mvkuGHy8EGT971jFThsWEjqdRIc62WeYphkOGv58HxEb58APvGeKL18l5+XBqhjjJPRqv8pCwVeEKln+IRz1HMe0c809tSRgpxYNT9hP/AM1K7TQnvZ57Hl79/3x5zUd3dvEflczzNtl7j52ohyx8/0NdL64nx5JUr/HwsGum6ANCo8X4TGCfrZJ0fM6Hx/Hke73OJ8TpYB4ax+Bl+w/6BuWqZNznPOC+NF8sP+TU6m/DrXim2D6AOGNcrI/E3a1xbc1ZQeoWfY77RDzJGijkiex8a4/z5aCvyZXUZvWvb7v20/vAuXn9oyw20PjI4SuuTNb6dAFBt3kfrAfjvNMs8zfisdWtp/bd+8zm0vtgYp9Vz/HWuGWMoAGiU+fPUnvAxvFflY0pgnbkOaZ10wMc4vtEj4ohfJ2OfN4PUDJ/VKY3w4yrcvZfW2417gom9/Bhs5HjSdgJ+v+jtP0jrxUV2qnqjne93Aj42yU/y8URm1LjXAk9bDwf38eUY/SYc570DALLD7bTerPL+m+RX0frotl18m/I8Ybxt4XJaD4zb+cTn/QkA6uCvQ2iMxxqxbs5ONxVjbN4w7rfqxhxOcRG/vuVjY5wBIGrw89L3eB8s5fhBemiYzx/UjHvP1WetoPUVT1hM6/XEHk94Rqud2MvP/Yd+eS+tT45N0npxnXE/DL5v7QsW0Hp2hlvYrM/v3ZrGS9e2mM9pHawP88eX2mi9mOfzQanYuJcM7f4RNfkOPvwQ748HtvLrzmzok7AiIiIiIiIiIiIiLaRJWBEREREREREREZEW0iSsiIiIiIiIiIiISAtpElZERERERERERESkhTQJKyIiIiIiIiIiItJCPHaQWHfORbS+++YHab3UwZNVL7qEL6cQ7DDX3Sjz1Ekr+dxL87S1KOmk9bYFS2n9zru30Hqpkyf3LV6+kdYBIDHSg9NpnpQX14dovdHgiW7WcxEYyZL33XU3rbdn+XIAoFDkCaPFAk/O3Lv/AK2HMU/BDIzk1K42/nqORTx1dGSY1wFg236eMriof4DWUxk7yVBOvVQ7P/cin7+f1PR5MiY8I6XVqgOIjIRx30hDt1LSEyMF1pIYAeO+UQ+NlFC3Tcb+GemlnW38nG82jX0wkpoLRqJlucITiL3ATkH1Ar7j2bxxPTCeqNCIIk2s0MwTfB0ww+tsdVl7USd2zEjr7dq+ndabTX7NmBjn45ioyc/XPXv2mOseMa7T5clxWl/Q003rpSJPCA5SvE80mrxPpDL8Gu2njGRaAOVahdZr1gmV8LHMzr2DtL5tN0/XLTf4NuU6eBKwV7RTdPnIByhmeG/Zt+MhWt+7l4+VbrzxF7R+5hk83byvk6ekVydHaR0AyuN8rNk8cx2tT47x9OgnbXyKuQ5pnWyGn8OJcS1GbIwPYn7e+UYdACbT/DiffOK5tN6euoDWKxO8NzYDY2yVNW5dG7xvpfP8OQKAcsT7te/x/W5GfJ/TxlizavQCY2SKasT3oTLJnyMAKBr7VzPWnS3xztXd1kXrkXF/OWmMuZDmr1veSB0HgNB4vq3Dr6kx0WknX+IJ9ZOD/Bo9sHgJra9Yza9vXXl+fALAzq3baH3vw3xuqbuP35OkwftjY6CD1pes53MHvtEb/Zp15gNeyA/2h2/bTevl4TKtrzuHP3/rLz6T1vft3EXr7Vm+D+svXEvrAOC3856QN+bN0gW+jlpjlNYPDPNjzAMf1wXGeDKy5gYATExUaf3QQT5Wio05rdnQJ2FFREREREREREREWkiTsCIiIiIiIiIiIiItpElYERERERERERERkRbSJKyIiIiIiIiIiIhIC2kSVkRERERERERERKSFjIjJYxU6eLLZ8lU8Ja1qBNQvW7mG1nuttG0Ao9t4ul0z4Um9UcjT0y56ypV8m1Y9kdZXnr2d1m+74y5a7yrxlDwA2HuQpwOmEp7olk0bqZPG0zRZ5il5YyM8IbiryJc/U8ZbZCTA9fb10XrdSFIeHBmjdS/g7wm0lXhCeyrgh2/DSF0GgId38ZTBvk6e7nzGEp6gKPPjc//6b7TuGcdm2kh1LbXxNNk1K5eZ677wnA20njLeykqMbUqMVNfESgU3UmPDmJ9fXd08CR0AMlkjSRl8HZlMltZ7uniyZGJk/qYyvM9lUsYlKG2nGddCvt+j4zy1e3SM95uJsVFab1Z4MiY8/rr19HTS+hlreEIpAKQzfL+twF/POjZk3tz4y5tp3fP4ORDHPPW6WuXX7u3795rrtg4Hqxd1dbTTejFnjD+M5adTxvmd5X3CT9nncaXGU8lTxrYmAV/H/uFJWm/G/MkotHUaW8T7SmPSHk/4Rt+s1fhr2t7G9+03Ljib1stjfPxWq9VofedO3gO3bt1K6wBQDXnT2THE+2C1wvftSVeaq5AWKhb52DU0zu1mZF3feH8K49hct5fh68738yTx8TI/lw6N8XPYC3i/aVT4DWbGM+4JRu1zOEz4/mUzfOw4bozrcmljLOPzunU9qFd4OjtiO817rGr0LmNRhRTf57YlS2k9sA4Bnz8XnvX5rhk+9uVZd5/GoCg2XjeZP/lufr+cMe75feN+oZTj18l8O5/bAYBVZ66j9f079/P6AZ50P1DiY5bzzjmT1pcOLKL1xBh/hL4xOQZg831baP3QzkO03r+Sz72sv3gjrbf18OevWuXjifY2PubK9tv3mH7auO4Y46sDW/i+LV3bT+vVkF+/UkYvgm9sT2zfUw0e4mPvkSE+j5f37ePyePRJWBEREREREREREZEW0iSsiIiIiIiIiIiISAtpElZERERERERERESkhTQJKyIiIiIiIiIiItJCmoQVERERERERERERaSEjzvFYQbZE63sPbKL18y64kNaLHTxFLJjYY647MtJbU0bC9MO7Jmj9SV0r+QoKS2i5rcgTNXMp/lzkM3ZCWs5IGYeRkLl40UJav99Iuc1keKLf+AR/LlYsOYPW167nCfAAMDzMk3dL7Z20vnf/QVr3fJ6I2NnFE/fGjNTzIODvIeQLfHsAoDrBX9MtxjGTz+h9itNJtcJTHBtGumM6xXvEBA/rRMF4PABEZ66n9VrCU759I0U3ayQKGyGwiIwfJB5Pd+zo5omZAOAbvwOfH+cNIxk5yPDESXh8OVaObWwk4m7f8bDxG8Ceg7yvDA/xtNNqladpRnUjUbjKX896nfeOJUt5iueypfy6AgBF49oF4/lIjBR2mT93bubHaCHPE4KThB9v9ZAfVx1dPea6s8b1vlHjyfWHJnl/DIx+0JYr0noY8WRfL83P+yDg2wkAXoqvI1vmqeSN5jitDw8PG2swkruNU6kR8SjxibKRJg+gUeW/s7SPj2V6ugZovVzmF6ThEZ4c3NPJn9cnnstTkXfvs8fXY1U+HntgN++nvjF+k/mRMs69fBu/H5msTPLlpPhyIit1GkDK41d23xgTxeB1L+C9MWUca9YR2GzwXppP857i1sGvxekUX0va2KYoNMYTNd4jQmNUlM7zBhVH9hggYxwDaSOhPR3yfWgkfB2esa25yBq08udipmFMbPzQugPzNCY67eRS/DxLG0n0YZPPf8QRP948337N80V+TVy9cR2t3/azW2j9gT38Wnn2k/i1tZ7m50B6jO9DT2KPiSbQSesb1/L5mt4z+L1Husjnm8oVPj7sW87Xm+ng21rlw0AAQHee95atd+6n9d07+f3ck9afTeuxz8eyxu02Ep/P1zUjYxIAQNzk15E4Mo5Xj9dnQzNMIiIiIiIiIiIiIi2kSVgRERERERERERGRFtIkrIiIiIiIiIiIiEgLaRJWREREREREREREpIU0CSsiIiIiIiIiIiLSQnYU+FHSuXZar9WsJGken5bO8MTOQpEvHwCKOZ4mnjUSNUspnkb5hX+6jtZf8PK30Hq6zNPcMlk+d+37RiIkgJWrFtP6weG9tF6b5Cl2Awt6aX14nKe51Rv89Vm1Zg2tr16zltYBYOyO22m9PMHTVsfLfJtCI/mwaiTcd3Z20HqUTNB6e6edhBo2+GsU+PyY2b2PJ/fJ/HjZb7+Y1usVnmBdzPPe4RnJ2XkztR4wgoAxPs5Tu+PQ6IEpnjiZyvN6YqT0Vpv83E5iex9830jLNVJNU1ZCcNpI0TWSlBMjkryZ8MfXYjt+s9jO0y67OjtpPWrwZeUCfmyMDvHUzN17ttP6mpW8lwZG6jIARMZ+W2n1xsNlHk2ExrFuJFIXCvy4zQf8vF+ydLW57qZxTB/az8csg0M86b6/fwGtZ3uX0Hp5lC8n9nlz7Oji6b0AkM120XrNOPUrIe+zOWPsGDX5uCQwkmwzAU8UTmesLHagmeM/u+h8nqS8dvkiWq81+Hhv21Z+bGx98H5av+RCnii8dClfLwDsvHsHrTeN5PPYSj6XeZExjs9Mjl9/4oQf5/k0P9ZCz369J8b5GCQK+DblOrppvb/YxleQGCnpxvjNA79+BjN83ijw+M8yqVnfHs8oMe53QvB6FBjXFeO5AADf+FkGRu8y9rlu3MMaD0cqNvYBvMd6xvgGADxj3BoYvxIE+gzZ6aY/4PM72yv83j4yriXNutFXQjuF3s/yY33J2hW0vm87v+7tH+THdHYRv18YMsYlC8b4trZFfD4DALryfIy45mlPp/XuRbyfjlX5PcykN0zr9YjfP2f28n2Iy3YvmszzeZ+0x1+fNU9YR+u5Xn5NGBoaofVKky+/ZFwfrflDADCGdfCN/jU5yeeiZkNdTERERERERERERKSFNAkrIiIiIiIiIiIi0kKahBURERERERERERFpIU3CioiIiIiIiIiIiLSQJmFFREREREREREREWmjW8Y9ewNOzK5M81bVmpJWn0zyZc2LITr2DkWKdBk+AW9jJo802b9pC63t38zoqe2l5x+7ttP6EgYv4cgAsXj5A64sO8vTg8hae3Ned7aT1ts5eWn/44e20vnDRYlofNZLeAaBppHweOGQkJidGgnrAD7tKlScoer6RtEmrQLFUNH4CIOZpghmPH6+NIZ42LfMjbvJj0Eq/tXKtSxl+jORzvD8BQLXGz41Kkx+f241zL5Ph/WzZyuW0vm0X70Pf+Z8baL3p814NALlshtYLxn4X8zwxuaOdJ5J3dvBEyyc84Rxa7+vlCemrl/D+BAC+kbJppRw3anVaT/m8D1UX8B6xaGEnry9eSOtRZF/TKhUeAV/M82PDSieW+ZPO8iTbvgU8iT6X4S/i4OBuWi+XZ0hcjfnVr9bkia8dfXz8sXjlGlpv6+DnZXvvAlofGuaJtZGReA0ARttEtcrHlJXKJK03mvzaDfBzLJPh25TL8mtCOuFJzQCwwOiDfV28nkvzY6Cvi48D2zO8lw/t3EnrO7Zup/WBbj4+BICxAzfTerq7j9YbxvhN5kfKGB8HHj9uc8a93OhBnpw9PLnPXPehfbx3dbX10PpZG86m9XSOX/fqSGi9aaSq+zF/vDU+BADf573U9/nveEZCdpLwdUceH7P6xv0RjH2w73gA3xrzmdvKtyllrNsac1nrTQd8PJm2dwHGSw0/4OuOjNdN5s/kCB+zlI15IuOwwtgIv9dKZhhTL1jKxzi+cQ9z1iXn0vrZtdW0HgR8PFEd5PNQ/Rl+DhSiGY7bET7G2f8wn6MKAn6f1O4X+OMj/lzUjfvqzAi/d8qk+PIBYHAvHwuuKfF7wzr481Sb4PNBqRTvOeNlPg9VT/jrNtBp74M1z5Ayxo6L+vlYaTZ0ayciIiIiIiIiIiLSQpqEFREREREREREREWkhTcKKiIiIiIiIiIiItJAmYUVERERERERERERaSJOwIiIiIiIiIiIiIi2kSVgRERERERERERGRFkrN+pFxQstBEtP6wt4eWi/ksrT+o7u3mqvuCvk6zuhO03ouG9F6JlWj9UMHt9N6XB+h9WWrV9J6YOwbABTau2i9t38JrQ8NT9L62HiF1iO+y+jr66P1VJpva60R8gUBaDT5z6q1Oq2HxkZZ9Vq9wR8f8vcKenoX0Lrn8eMCADIePwayHt+3KCmYy5JT75vf/gGtx80mrfvgx1Qpw1/XtvZ2c90rzuDnal9PidZ7Fi6j9W7juM0Vc7Q+umkHrd+7aRetVxPeqwEgFRh18N9pM7ZpzbLltH7JRefTek+xjdaLAb8EJR4tAwAaRo8KI96HKmOjtN6M+DGTL/B97uws0vqB/QdofXBwmNYBIF/M03r/AD82CgXer3vb+fMqrdfZ2UvrgXFM1+v82uMZ74UPD42a6x4f5+ODwLiuBzE/8Xfs4cdu+3iV1js6OvnyA37O1Gu8/wKAZ1xzs2ljWFrkPTuf8H32U0YTMcasxTxffjrhfQIAlvTwnlDI8Oe7PD5K62GFv56e0cpXrlxD65seeJjW165dxxcEABF/Hfbt3UPr2a5ue1lyynkeP85TAT8GY5/3m4mJCVo/dGi/ue7REX6MPHT3rbT+wF030fqaNRtofcWaM2m9q7efb5DPn4sotu9rkPDnwxqCBL4xiDJ+I2UMuqzXLY55f4qtm7wZ1h0Y67ZGiIkxdrTqliTi+xDOsBzrJ9Z1YqZ7VZkfnjFOHVjCz1drTBQZcw0NY64BAEb2H6L1BSuW0npXD7+OFYeN8duuvbS+OMPvGZs+H0M1PHs8sWiRsawmP5+auw7S+qEmP5ti45rQVuT3sMV8B62nMhlaBwDf5z9rz/I+Ozg0RuuN7byedPOxZsHYpiBvfNY0bc8T1Y35zhXrVtH6ymWLzWUdjz4JKyIiIiIiIiIiItJCmoQVERERERERERERaSFNwoqIiIiIiIiIiIi0kCZhRURERERERERERFpIk7AiIiIiIiIiIiIiLWTE0B4rbaQsdpR4ynNnG697RkrleMJTZgFgcIQnP/a28c0vZnjqWeTzVLrte7fTen8XT4ZbbiR51uzQO9x62yZa37NvhNbbSl20nk7zZLj7tuw01szn2WOjXp8hcXKyzNP+Ort5ymBoRJzvO8AT/YptRhJfwJPqCgWeZpzJ8IRGAEBziJaj8iit9y9Q+vjp5Nd33EvruTRPRmzUx2k9neHH/8W/caG57h17dtH60D7++LM2bqT1TJ6fw5U6TxJP5/jx/ITzz6H1WtVOEM0YyeNnrFpJ6xvP5Knai3o7ab29wPt+bKSk7zISTQ+O8L4IAPsG+e+UJ8u0Pjo6SuuNJn+e0hn+HGWy/HWLQt6fmkbCKwAUOnlfOQv8mOno4I9fNdBnrkNaK0jz87JS5cd6YETdBynjuIrs98hTKZ5mGxtJ35ksP356exfSeskY1+WM3tVhnBspoy8DQGKkgycRf57CkA+wOtr5c+H7RkJwxF+fVMLrcX2S1gGgI2vsQ8h7SxTxeiPk4+uq0TcLxlhpx34+vrl/6w9oHQDqdT6ua9Z5/0qMhGU5vQTGPVsux8/V9evW0/qaM+3k58rEflq/7/bbaf2OX99M6zf+bAetb7qfj/fWnnkerZ+x7kxa7+zqpHUAyBjX+8A8zvk5D/AEc/vxxrghjvjSjf43kzji646Me7PY2CZrD06Ul/DlA0Di8efb9/nrExoJ5jJ/cp18HiczyMcB+XbeizIp/pqnAnvKamQv70ULFg7QehTwozoc59fo5kiF1g8a4wnrvq29xPcZAHJ86gqFtnZar1X4NbpeqdF6EvHeMjk5wespvpwgZWwoAATGvEwPn9Na2sHnj+KYP69bHtxN6139C2i9nuZ9ZdIYpwNAYEyN5rO83jDGjrOhT8KKiIiIiIiIiIiItJAmYUVERERERERERERaSJOwIiIiIiIiIiIiIi2kSVgRERERERERERGRFtIkrIiIiIiIiIiIiEgL2VFzRwmMJNuBBTx5LmXM78Y1njy3cAlP5waAX+/dTuujHk/iSwKekt3Ry5PhOtp50ls6xxOFV6zZQOuljh5aB4DPf+6LtF4xno/x6jB/fJXvmxF6joEuvm+1YZ5GWs7y5wgAOtr58/3Ag5tp/cABnmI+PsHThjs7+U60F3n6cZDwtNB0gz9HABBU9tJ6X9FIXs7NVS6ozIVDu/lx293FkxcXL+GJiRvOOYPW00baNQDcd+ettN5vpA2XPH4uHRzcR+vFdp543WMkiP7Wc55C675nv7fW0cHX0dvDe9fwME/b3raDn/Njo+O0Pj7G0zcnxnni6GjZPoeHx8doPWwa/SDNe2Amy+t+wJ+/jnZ+bHR2dtJ61wJ+/QCAbMFIEM3z+mSVp5TK/Onp42OfuMlTskt5frzFEU+nT/t2iu6CBYto3TNSazO5PK9n+TpyOSMxPMXPjcQYH3pGArH7If9ZYPSvSpmPG/yEP99ZY1CU+DxVuzLGe92e7bzXAcBw2ugJeb7u/p5OWs/l+Hlfa/D04yTFk5dTBZ6ifGg3H/cAwNKFfbTe1uDP63idb5PMjzjmr5Pv81ToxLceb5yPgZ2E3dmzlNafdDkfd61Zw+/zfv7Tn9D6tm17aL18h3HfND5K62efcy6tA8DSpXwfrCT2KOTjush4HeLYOIfB+xASXvc84/EwWyk8n/dSz7o/N1bhG8tJjG21ngtr3wAgMbeJ71xk1GX+lMt8PB82+Ng85C0KoXHORJF9/KQKfIxTGef3HrkOPq+Qaufj9ksvfyqt33L77bT+i1/fQetnr+X3ngDQ38XXPTHExz4dnfx+bkn/QlqvGmOooVE+31SrNmgdgf06HBjaT+uFtgytL1+zjta9Gj8GVhq9ZfvwQVpPtfOxcrlm7BuA7Zu30vq2hx6g9YUrLjOXdTz6JKyIiIiIiIiIiIhIC2kSVkRERERERERERKSFNAkrIiIiIiIiIiIi0kKahBURERERERERERFpIU3CioiIiIiIiIiIiLQQj38kMhmextrexROCw4gvOmukuq5ducxc969v44lx4+k1tB57PA2vfzFP+bx/0820fulTX0frN/2SP75c5sngANBsDNL6wf27jN/g8+OTTV5PgacPdvkjtL44z7d17JCdBBwGPIG+fwGvRxFPt6saSd+1Kk9WLKf5MRPGPOmvWeOJqgCwIM2TqBeVeDpxPeSPl/mx56H7aX28nSddPv9Zv0vrz3nO02n9hz/6gbnuBZ28Dy0oFGk9n+LprTmPpzv2d/Bk6zajnivwZPPQSt2FnYYeRnyb9j/Iz6WdBw/QeqPJ153K8eeora2b1hcYaeEA0DSSVi3pDO/7QcB7qVVva+Ovf7uRphrMkAw/aaTIHjjArxO1Gn88nminPktrFYwk+qaRupov8nOvs50nicfhDEnAGZ40my/xYzHxeAyxbySAx4nxeOt9e6OczPA2fwLec0LjmhtG/BwYH+LnjDW4Tfv8eZ0cO0Tr+/buNZYE9HfzY6Cz2EvrlYaRoJ7iT1Ro7EVipEQvXsKT3tedsYrWAeC8DfxnDz3Mx6Z33LPJXJacep5vnKseP3b8VJ3W00bidWT0DgDwjHPYT/P+dMbac2g9Dvnxv2/f12l9ZJCfk5vrY7R+YM+DtA4Aq89YT+tnbuTbusBIHk8Z97Zhkz8XzdBIgE8iWrd6OAB4vj3W4Avjr5uHE1tOYj3ePCZn2iTjeufxX/J9Pq6T+dOo8mt3scDvz5rGvEWc48dn3rjPA4BCsY/WrXmIOOLn2Z6xIVo/o8DHVhedfT6t33Y7v1et1Pn2AEA+30HruYxxPhkn1N69/P4sm+XnzPIVK2g9ifny02m7Fy2dLNP6PmObtmziz9PajU+g9dXdG2l9+BY+fhse4ePGJux9GBrn15GOLj6uW7V6tbms49EnYUVERERERERERERaSJOwIiIiIiIiIiIiIi2kSVgRERERERERERGRFtIkrIiIiIiIiIiIiEgLaRJWREREREREREREpIWsANljFEs83bqrl6eFhUYyZ83nSZG5Ek+ZBYDOTp4Yt3PXflp/0oU8Pa02yRP3Cm1GKu6e3bS+5aGHaD2MeCoyYIZFomyksLX18ATOsTGe9NZR4snL69aeReu/uusBWr/9ge20DgBPuvy5tJ7O8CTzh7dsofWxCb4PsfGeQK06SevL+3laYb6Yp3UA6O420qNTPLEwbNgJ1XLq1So8efHsc/lxfsXTr6D1ns4eWr/s4qeY6/aNVO22NE/FbTd6ZpDh52oqw4/bxFhvDN5vxkZ4uicAtBsJvrGRFLlqHX9eFyxZS+vDI+O03tbZSetNI+XbmyFWPW000zjm/b1Wq9H6ZJn3lSTmqamTFf74Xfv28fVWeZ8DgGaFb1NkJLYWivx1k/lTrvLXsC3PrzFBwMdEBw/x83V8bNRcdxzz82PN2nW03tnNx2mBkXLrGf0gjPg51mjwxPVKg/drAKjV+fkRNngP8SKepJzU+bqLGZ4E3NnZTev5DE9XTnn2GKCzxMc+HW283jC2tWK8no0632ff4+OVrg4+ji5k7X66e9cOWg+M3d647gxzWXLq+UZ6fGDW+QubMZLrY+vmBQCMRPvEGMs3Gvx4XrJ0Ba2vMFK7f3WAX3PDkG/PoYOjtA4Ahwb30vqmTXfT+sqVa2h99Wp+XvT3L6b1tjZ+XwuP961ag48NACAy7lPSGX6/nSTWmNJ4PY1ekHj8emCze6mX8APQOCwRmD+R+RIYr2+hVKL19h5er8f8OpnJ2Nexwd28JxR7+fV+fC9/fM4YN9x8P58zuezcC2n9Rb/9IlrfvWM7rQNAZPTHXBsfU1qnQFuJjzWjmC9/724+l5Yx7knjkC8HAFJ5/vz1L+Hjq7EhPkYc3G/Mv43x8eHCgRW0vnv/dlpPSrw3AsCydctoffv922h9/+5Bc1nHo0/CioiIiIiIiIiIiLSQJmFFREREREREREREWkiTsCIiIiIiIiIiIiItpElYERERERERERERkRbSJKyIiIiIiIiIiIhIC/EINSIOeZJtRzdPtytXeZJjxUjDDgJ7PnjZ0iW0/tB9m2l9rMITG0tFnni2dDVf746HeGrsHiNV75JLeEoeAFSMZO22RTw5s3vRSlrfOcwT+qp1vs+ZIk8GbO9bSutPaOPPNQAcMlKct++4i9bLVZ7ePjrGn4u+Pp6e15Hw53t5iS9/Qbud5pr2eLJeo1ml9aKRMCvzY9X6c2n95a9+I61XIp7U+OCWA7QeG8m0AJBr572uaaS6Do8aabYx76VRxI9Bz+jSMXiC6MT4BP8FAMEBIx3z4EFarxvp3HGNp3MXC0Vaf3gzT7rctnMnrXsp+3Xo7u2hdSt5fGxsjNaHBnmiZRLx1833eY/1jHoxz5NFAaAzx5+nXC5L69VJfmzI/Mmm+TE6NMjPpa0j/HiLIn7cdnZ1meteuLCf1htGam2zUaP1OOHH+niFJ9ZWq0bvCvk+BL6dhp1J8zFf0UgnzhX5+ZRP8wZZM8ZcMYzz1UhwtlLmASAT8LGGNZ5NG/tWC3k/9Yzle8Y+NJt8TLR7aITWAaBS5v0xleK9aGChPUaUUy8wEuqtOoxjDZ6ReJ3Y53BiHIdmbLexrFwuR+ttbe186b6xfONcTWbYBy/hz8fECO/jdwzyJPH77voVrXf38D4+MMDvwQYWrqD1XK6D1gGgp2chrff1D9C6F/DnyboehLFRT/jrH8XGcTHD7ZQX856ZRHxZibUOmTcFY8wbRvyF7+rupXXfuO+oGeMYADi4h99jdBmnftjk90n5hQtofTjNz4Ff3nUHrf/mFc+i9aRmj+V3bt1C69k8H5vUG/x6v2iAP6/ZLB8rjU7wsVIuw8cAXmRcKwAcsMa5WX5+54u891fLfK6mWedj0J/ewecDt1f461zqtO8xO3r4cbxkHR/79Pbz8fhs6JOwIiIiIiIiIiIiIi2kSVgRERERERERERGRFtIkrIiIiIiIiIiIiEgLaRJWREREREREREREpIU0CSsiIiIiIiIiIiLSQkbu9rEmhnhCfT7N09PqNZ7a5sV8lZ5np1f2dvM07If8h2n94DBP9h0KeJpiR4knSK4/i6dRPrxjF603jTB0ABgd54luZ5xxBq+vXE3rO/bxJNv77ruH1ocGC7SeyfK0va5SG60DwO77HqD1/UM8xc7zM7Qe5Pg6Fi5ZSevLjUTNZW08VS/nG+mvAOo1fgzEMU/Ka1pJsjIvXnzVVbTeNcBTC++6lydmNho83bExQ+JqBJ5UnRiproERBeuB97rISoE1Hu+bb6HZvbQZ8nUMDh2g9TDkSZ6+8TR1tnfSeqPB09OHh3ivhpEKDgCDgzwhtd7k2xpW+eMjI1k0yPBrVCHH+1nWSEIPQnsfGjUrXZRfRKwEUZk/oyNDtL5vz15aLxT5tXj9hrNpvbuXp/QCQKHA01trVX4+jYwM03qzyc/LSsLPjUKBH4cd7XwcWMzyOgDkM/yamzISziMjkTcM+bY2jQFZzRgfeEa/9n37PI4i3mubRgtOBbyHJDHvUbU6rw8d4gnEg0O8PjHBE4IBYGR0lNaLhSKtZ9v4eFzmh2ck1AfGuDnx+OO9hJ8vXmKPJ2Ccq1Y9neHHf3WSH5/79/P7zn379tP6+BhffnqG8USb0ZeLOd7rCim+jijiz9+efXwMunk7v3+t1X5E62Fkf2aqp3cRrZ999gZaP2PNUlrv6+PXnPYOI209307rCYzxygzj69C6f/b4fjeMfi3zJ9/Bj4co4eef7/MxwN4d22i9UbRf8zjFf3ZgJz//lqzgifYN436hezE/N+6/6U5aL/7sRlp/wll8zgcAatVJWs8U+HxN7wCfS2lU+DyRdR9mzbHFRh/fu5f3XwCIGkafavBlhdZ4LzbuhbK8/+46eJDW/R7eu4YHR2gdAEJjTHT+Uy6j9YFefizNhj4JKyIiIiIiIiIiItJCmoQVERERERERERERaSFNwoqIiIiIiIiIiIi0kCZhRURERERERERERFpIk7AiIiIiIiIiIiIiLcRjoImHt/Akx2VnnEnrOZ8n1sYNnmCdMpIoASBn/KytjSfGldp5Qt/69eto/Yc/+B6tV8Z4Alyhm6fkbdnN09kAYOmSZbS+ct35tJ41ErpXLePLGR3mSW/3b9pM67GRhLpnlL9uADBeNdKGI56APD5aofUFRpL9ziH++O6lHbQ+ZCUvx/Y+jBoRnEmKH2P1GZYlp94dd/6a1u++505a98BTxIPASOZO22negXGMAHxZgZHIm8rw976sPpdO8+VnjOPfz/B9BoAg4ctqz3TxZWV5j20GVi/gyeOhEbCcKfBk4maFp3gCQKU8TuuNkP+O1+Sp6vCN1F0j8Twq8/5UnuDrLRg9HAD6OvjzmjLS540geZlH3X08EbWrl48PUlY/MM77iUmelAsAk5P8HMhm+YHSbBrjsZCfG4v6+/jyczyZNvD5OZPEvB8AQLnGx4K1cZ6UPjoyTOtDw4dovVot0/qZZ/JxYLqzk9ZnyuAOfP7TWsj3u17m+7Z7/y5aPzTI963R4K9npcz3eWyUpyUDQCbgfco6/m74EU9vf88732auQ1rI48daHBvnZMjHDWHCk+vjGT6q4wW8HyQxX1YAXr/r9ttofXKEH//dbXzcsHsff3y7kdoOAGljXBeHvD+1l/g5H6R5f8+k+Lams0W+HJ+fw8MznMM7tt9P62OjPBn+9l/zcz6T4c/F0qWraH3RQn4/unDRUv74fv54ACiW+BjUy/MD0PPtsbrMj3yJH+sTNX6/sO3BLbReHhmk9WKBj0sAoMlPP5SNcUCQ5sf6w9t30vr4ML92Lz57Da1/74af0/pEnY/dAOCis8+m9XqNj9MK5v0CP7/HRkdpvVGt0Xq+wO9T/LR9j5nN8x6fN8YZjZgfG3Xjvq1u3GMuXbWa1idTfEw8ZoxZAaDLGP/CuOc+UBsyl3U8+iSsiIiIiIiIiIiISAtpElZERERERERERESkhTQJKyIiIiIiIiIiItJCmoQVERERERERERERaSFNwoqIiIiIiIiIiIi0kCZhRURERERERERERFooNdsH3rnlIK0vO+siWo9RpnUvDPkK4sRc9/jEBK2Pjg7Sek/3ebT+vOc8jdbPO3c9rX/1G/9F654X0HpHRxetA8DiRUtovdTeSetByJ+/7gH+ki1c2aT1sXyO1u+46y5a3zfp0ToAJOl2Wu8Y6KH13tUdtB6k+DZFCV/3g0mR1rfsj2g9E9j7UK3VaL1iHJZhzF9rmR8//9kPab0yPkrrmXSB1vOFNmMNdksMEv6zxHgvy0/zYyeV4cdnLsvPi1wuS+uZHN+3VIGfjwCQy/BzMuOn+bKMt+m8HN8Hz+N9vFlv0Hq9ys/HZpM/HgBiLzY2iq87BePa4hvndpY/Fx1Fq86Pi1I+w5cPIJvm+5D2eB/3orq5LJkfzYQfV9b5mkrx4ydK+LEQGMczAKQCo+cYl75cjh+L1TI/z6pjfMxV5WWkMlYPtN/nTyJ+0X1w0/20vnP7dloPI74PScLHB4sWDtB6dwfvjdVKhdZn+tnoyCitD40M8eU0qrQeGc9RxVjv2Pg4rftWDwRQSPH+tX/fPl7fv99clpx6zZBfGxoN41oS8tfb9/ixZlxtAQAJ+O9YQ/DJSd5AalW+D+vWnknr55/3RFq/7e57af2WX/+KbxCAsUl+LkUh7ysLFi6i9Sc96Um0njKuB9t37KD1m2++idY3nrmB1gGg3ehdB4xz9cCBA7RujbsG+hfS+sqVK2g9ivhRU54Yo3UASIwelU7x+7+acXzL/Mmm+LG+79AuWt/xwIO0fvaFG2k9SNn34xPGMVcyzo1alR/rPd3dtL5zFz9fF65dTusrL+Dn65btu2kdAFatWEbrq5fzddQm+TxRGPFzacHAYlrfu5vv28g479eZGa4KYczPy5FhvqxsgR8zScyvLUlozPsY96TlMT7mWrKSP9cAsHzDalrfM7KT1idr9v3q8eiTsCIiIiIiIiIiIiItpElYERERERERERERkRbSJKyIiIiIiIiIiIhIC2kSVkRERERERERERKSFNAkrIiIiIiIiIiIi0kJ2FPhRHhrL0/pgxFPGkzRPvfYbPB0xmSGF3jdSrBctXEDrT770fFrPpXmq2srlPDHuN1/yClr/z//6Lq0P7reTH/eN8TS5Wm0LrWeM1NHhKq9v2WEk1hoJkknvOlrvWsAT1wEgNtIrPY+nPsdGenvs8aTmppHoNxbx5efSfDm5lBHNCqDs8STUZpqvIzGS/mR+9Pe10/q+6iFaj6JRWm83EjBTxrEMAOODI7Q+Mc4TKptGandspBkn8Uw5xITPtzWT530RAJI0f/5Cz0hMTvH36QoZfj0o5vk5HzV530JspHZn7fcHvQw/v3MZvg95I524u8RTd5eU+DVtycJeWi/kaBn1mhElD8BP+PUxZcRKd7bz51vmz+aHNtH6ho08FTef49cr67T3YV/H4piPZQ4cPEjr5XE+NqlXq7Qehfx8jSJeX7VmBa33LeDnDABExo6nU7yvdXTw3pU1ntfAGFLW6vzce+BBntQ8WZ7kC5phWU3j+YsT3u/KE7xXVI3Xp1Lh15xGg19zsil7qD9+cJDWR0dHaT2yerbMi8Q4pqy0eavs+bzfBDN8VCf2jOu60bryBT4+ePLlTzcWw1eeCvjxvPa8i2j9rAsu5BsEwDeeD6v/9vb00PqqVTxRO2X0pxVnnEPri5bxe7N83h4DdBgJ8NaxMTzME8MjI2F+Qd8Arbe18fUGRr/xY/tgimI+Lm4ax2XsqQ+dbsZGx2l9cmyU1ksFfq33Yt5Xsln7Ne/u4gPxfYP8Glpu8ONtxepltN7R10XrWzdvpfX1y3k/8FP2HEsj4dfvSo1f79uN528i5OOSRpPXC+2dtD44yseT1RF+LwwA7UZPKKT5ue97fCzbVeT9biLi47Fimc/tdGb5/V9Hv32ffKjO5xMmQ+OeLuE9fjb0SVgRERERERERERGRFtIkrIiIiIiIiIiIiEgLaRJWREREREREREREpIU0CSsiIiIiIiIiIiLSQpqEFREREREREREREWkhOzL1KA+N8vna//75PbR+3nKeijuQ4YnUhbS9KQsHeDLjwl6elrt61RK+ICN5bt8hnhT5uS9/l9Zvv/N+Wq/X+PIBwAjLBRL+vCZGsnqU5fscGUnpKfCEudDj0cGhbydw5qyXKOHplbWGsW9G2mUqxdMNAyNFOanxJzWEnTKfNtI5A4/XG007oVpOvaTJExA7ijydcKJmpFcbCYvr1m+0172wm9YPDfL+cXCIp05PjvI0yEqF75uVSB4bCZjFFE+nBID15/DEzr3jPPXx0PgorVcbPK2zWuNJpIGRNJxN89etmOb9DAA6jdTMvs5OWh9YxK8faxb30/qCLO+Nk2We/Do8zJM0g4z9HmehyJNWS21833p6+ONl/jRr/JypTY7Sum9c060Uc99IAAeAKGzS+ubND9G6lU6cMcZd6Sy/FqcCfm7EIe9pfmhfixHx/e7p5n3WGDagUuW9vGrUd+3afULLN4YGAIDE5z+sNHhvHhsdpfXy0Bitp42U8dB4/cOIvw5lI7UaAMIq7+WRsSwYx6vMj2rVuOYa1/RUws9hK5k7hHUcAKFxflvHTmyN5Y1DKjTGPp5x3jVivt5Fy1byFQBAzE98z6j7xj3btp3DtF5t8H229qGtg2+r9dwBwMgYf55SRv8otq/gCzLu5YbH+DG29wDf5zjmL2jWt1PEM8aPvBLfh9oI77EyfyrGGLmQ5eP5S5/xNFpff+YqWt81tNVc9+5x3teqm/mxW63w695Ek59LfaUeWh+K+X3epvseoPWnbDyX1gGgt8TndyaG+D1muzFW8sI6rY9VjDkqj59jvtFyisU2/gMAhRy/h6kax0Y2y0/82OPndyVrHGMVvrGrFi6m9aGU3T9Gxvhrms5naT2s2tfI49EnYUVERERERERERERaSJOwIiIiIiIiIiIiIi2kSVgRERERERERERGRFtIkrIiIiIiIiIiIiEgLaRJWREREREREREREpIXs+N2jTBqphjfcztN4N299mNafc8EGWl+9yE703vbwZlp/yoVn0XrOSNaeaPD0vK/+z69o/Y7799J6JeQJaUjxRGEA8NN8vttKkfQ9ntCXGBG+kZEKWo/5eptGeqnn8dRdAKiDP6+JEW2aSvF1BwGvFwr8GMsY6ayRkdwXGUl/ABAZvxQaiYiZtk5zWXLqDe3lydZRkycdVo0k58qunbTeHfBjHAB6c0VaT9crtJ43oiWrAd+mJOHHIKx0Ys/YtypPdgSAJ1+4kdY3nnk2re/cuYPWh0ZHaL1eN9I3jT6X8nlPzvt2AndvjvffziJ/fSLj+ds/yI+BBwf30bqX4/2pfQFPTc23z5Ag2sa3tbuXL6vUYV8fZX7kjOtbozppPN5I4TbOAd+4TgKAn+bXuPb2El93mq+jVCzQemCcY4UcH+OETT5u2PwATwgGgLFhnqw9Vuap7lHCz+N0hu9bynj+skYMt2f0nEqNpysDwKFhnlpcqfPrUWC81l3tnbTeqBkJwcYxFjaNVHpjvOfw4xKecbx6+uzG6eRnP/sxrY+Fd9N6McXP+cgYxzRjY6ANoBnx630U8X5g3Ss0Q/54674mSPH+V6sb9wqRPZ7wEn5OplO8B3Z39tJ6qdRJ683IuPczNskzzzvjPAXg+3wd1rnqG/fzqRSv+8ZyrOUbLzM8+1CC5xn3pAVjH2qH7IXJvOge6Kb1hWespfXz1i6n9a5ePt5t77bvzzLGbU+qxM+boQP8fiuO+fhj5w5+X9BZ4Nua7hug9YNVvnwAWGrcwwQhP6GiWp3WwwavR+Djt0zA+2nGOL+roXWvCixcYOz3Qf74SWO8N2o8T7WEv57VUb5Nh6p8ziDp7ecbBMBr8OtRtsjH137Wnjc7Ho2mRERERERERERERFpIk7AiIiIiIiIiIiIiLaRJWBEREREREREREZEW0iSsiIiIiIiIiIiISAtpElZERERERERERESkhewY+aP09PbR+vAIT23bNzJK67+8i6flRk2ekufwxMa+gSW07gU81fLWX99L69/90U20Xo95iiiM1EwroXImkZEmnhjRmbGRFmqljkZGklzaSBf1Ap4UCgAIjERN43cCI3GvrY0nzAXG8+cnRnJqYqSOwk5QRMTjOQcGeMJhW7tSyU8nAwt5+ubunTwBMawbKY4er2976EFz3WMZ3g+ss74c8+O2bCQBx5GVOMnP7cBIy63X7PTN23/xA1q/3Eh9PMs4J6sdbbQeh0bCrZGmWWvw9O+xiKd7AsDBIR6DuuOBA7Q+WB3n607z5y+/gB9jXQOdtJ5tNxLm87xfAkCho50vq8DTUT2jl8r88Y2k+yjk1xjP44+3zpl63T6PI6OH5I3rup/m18RquczXPbyX1ndVJmk9Ns5vz4rJBpA2tilI8QTfdI4/f75xajQafJsmR6q0XqvxfavVeGo8AFh55TmjbzZrfLzXBN+3ao1va7XK67GRZO/5drJ6aBzHiZHqnjH6psyPXJpff5qBcV2K+QmTzfJrUuzZ157ION5843hLjLFMHBv9w0jnThLeM2PjXsEzz1QgMe6RzH7NVw0f/NxOBXzf6nU+xvGs+8gZTrvQSE9vNvm6g8C41zJ6gWeMNU/0nrcxaV/TEmNba8YtaTYYOqF1S+tVK3w8v3tyD603mnzMvnzlSlpf0t9rrnvdonW0HhgDhHxmmNbrdWM8NsH3bXyM95xz1q6l9VzBnp8YPciP6T5jTLT7EL8X2jPEl5Ok+f3FqoF+Wm8r5Gl9pnmiasPogz6/H5o0ekLY5M9rf2kBrd9f3kzr923bRusrl/N7WAAoZPhr1KzyY2DXjp3mso5Hn4QVERERERERERERaSFNwoqIiIiIiIiIiIi0kCZhRURERERERERERFpIk7AiIiIiIiIiIiIiLaRJWBEREREREREREZEWmnXkcspIQ0uns7Qe1ngS2vYDPKm6Xt5krvsp5/OUuXznQlofq/HEzp/e8mtaryU8lbFpJBBnszypzkqmBYBKxU7YZQIjkdQIqbQC1JE1UrU9K1LYqgPwsjxtNZ/nCXopI6nZSuycMJKao5jvXN1Ioe7oshMU+xfyn5VyfFurE3aap5x6S89YSuvjZd5Xyrt5eqQVNVuL+LEJAMPG8ZYxztWG0VciI9kXid0/GM9M9bV/Z8vdv6L1XRO81/X5/NxOjNTzyEjLnfT5vu1PeNrklrrdL3eHPFW4UuCvQ9tSfp3oX7mc1nOdPCXa7I1G0nCpVOKPB1Bo58mcvnE9TYyUaJk/E6O8t1QnRmn94F4+JqrX+PEcGcc5ADSbPIHWurZa56uVYp5O8x6VSvHjMDDGh6m0naJr9akw4r2oVub7XK/zccPEeJXWjbaMYhsf1wUzJIAnxjWhXub9KzTGlGN1vm/VKt+HyIhot1Lg4xO8tgBAKsUTgj0jyV7mR2z0icnyCK0XAusaw5cfzfBZnWbIj4VG0zr++fUevtW3+Pli9b845NfoMDJukABEoXEuGdfc2OylfPlJwl+fes04tyO+PdZ6ASAx7pESWOc9X0di3Eh6RrO2hprWtgZG4jkAhMa1q9LJx0oDS+3xlcyPof18TBQa59j9D/BU+ZUH9tD6pZdcaK67t5MfD8t7l9B64POxya7Rg7S+9MwFtH5wN++zW7bwe63OrgFaB4B247yZ4K0CO3fupvUHd+yi9QU9fB96C3xs2tfZQ+td1j0SgF37+GvaXuD3kp3dnbReLvP5pkPjw7Q+XJ6k9bFxYw5nhhvlqnG87n94C63njf47G7qzExEREREREREREWkhTcKKiIiIiIiIiIiItJAmYUVERERERERERERaSJOwIiIiIiIiIiIiIi2kSVgRERERERERERGRFjLino8VG2lhSIwEyYAnzTbAE+kOTtpJwLc/uJfWn1cxkuQSnoa2Z4TXs0aKdVjh21qr820tGOlvAJBK86faWpZnJPf5Hq+nU3z5iZHonRjz7+ksf90AYLLJj4FGyNOJ8/kTS1avG0nD5RpPQi119tJ6Z5+dPtgI+bIefOABWk8bKcQyP9q7umm9r5+nPu7bzdM67VRXe911I1G2afxOlPDHR2Zi7YmxkmzNnQPQNNK2y4OHaN3PdtJ6UOcpx3uN5+hO8D63JWWc8yWezA0AxSVdtN63aBGt9/T103q2yNM3G8bzmhgJ49kU78mBUQfsNPnA6OO+8XiZP/t3bKb1JObHiZV67fn8hE1l7XPAC4y0aiPxNZPm6beFAj8HrOXExr6FRkr65KSdht1o8N+JjZh23zNSwyO+jkyW79sCo0+UJ8dofXyUpx8DQNjg606M58MzmnOlYaXJW6nxJ9b7rfUCQNo4/gLjOlWpGGnDMi927bqP1rfs52PdgtELUgk/1qKZBhTgPSqKjXM75udLOmPcRxqPDyNjW612M0MSdhDwdXseP8d843yx1hEE/Jpu9dJGg79ucWSPG61riO/xdXsef91iYwBsjX1OsA2hCf66AUDUxfv1orPPpPWOorkomSeVKj9223P8td28nd937Nx2gNYnx/lcAwBceOkGWu/u4vcLA73LaL2Y7+DbNLKd1uMl/ECczPFtHS/vonUACHN8/mUi5mdUta+N1lOppbQ+MjnJ12vdXhgn+PjIqPELQE8/v9+qGuOrkTFe91P8OrVniN/T375lG633nreK1jOe/RnU3Q/tpvVSgW9TJrHHucejT8KKiIiIiIiIiIiItJAmYUVERERERERERERaSJOwIiIiIiIiIiIiIi2kSVgRERERERERERGRFtIkrIiIiIiIiIiIiEgL8ehExooNN1ITg8BIX0x4DFvk20nA2w/yNNbPffV7tH7F5U+k9W17eRJfJTKSOY056nSOJ6QFGV4HgIKRwJnJ8zS86gRP1ms2jbTckL8O6Rx/ia3kbmv5gJ3obSVqVis8ic96vLX8zq5uWu/pX0jrg0PDtA4Ao4P7eX0nT7pes3KluSw59fI5nkSZzWVp3UrdjZpG2usMQcChkZYLI0Ua1sOtlVhRs9ZajTTeZIYk4EkjkfcBI527I5Pnj6/x9NL7Qt63htt5Omr3Un5+LVzBE8wBoHMh7wfZYonWfSNZtGldu4xUziDNj7GU0fetxGIAiCKe9G6l0vszJHnK/AjiKq1bKdaxkXRvHSeRbw/P/MRKveaPr0d1Wg+b/LyPjR5lHbeWVMreh7Rx3gQpPhZMGf0xMsY+uQxfdzbPz+ORIf4clSf4OAYA0j4fswTG+dqoG6+DlT5uXETMPuEbSe8zXFtyxlhwcnyU1itlnmYs88NPjLGPlVwf8/MiMY4Rb6Zrj8+PWy/hvS5ljPEDz9gmY2hl9b/EM2K+ZxgTJbHR04zdjo0xlHVPFRnPX9N4jmLj3jnx7XPYOr0TawySGOMPs9/wfUhSvB4a9bZFPDkdAJacvZbWUx4/vkcfusdclsyPfIHPZyBs0LIf8ePzwP4hWr/hv39urru9g59/Z5y9htYLqXZaX9LWR+tZo9c9GO+mdY9PTyBTn+E8rvPnqZlr0np/7wJaXxDylZeHx2l9wlhvKeFzb5VGjdYBIJXn47pi1hh3Gc1r2+6Haf2B7Vv4igv8XnXB4iW0fvdPb+HLAfDUJ/I5xAuffAmt3/ijH5jLOh7d2YmIiIiIiIiIiIi0kCZhRURERERERERERFpIk7AiIiIiIiIiIiIiLaRJWBEREREREREREZEW0iSsiIiIiIiIiIiISAtpElZERERERERERESkhVKzfWB3Zyet12oTtF6uNmg9E+RpPQxjc91+OkvrP7v1blrftncvrY+Vm7Q+PFnl28R3AcViiT8+tvchm+X7kMpkaD2Xj2g98AO+nDRfTmTMs4dxQuueUQeAJOHbFDX589po8icwn8vRem9PD6139S7ky0/4vtUz9mFdzfLnKU6lab1c48eGzI9mFNJ6ucr7UFsnP9Zq5TqtRzOcw5HHj7fIOmWMH3j8NALgmetmkoQ/Pgns47/s8+fv540xWt9R4Y8fLvDnItW/lNYHFvfR+sq+Xlrv6eC9AAB8o/+WwZ/vmsfrqRTvpbkc79W5QpEvJ8OPsVy+QOsAkDV6YDrN+5CcfuKIX/eShB9vScLPpSQ2zuOmfS2OIt5ErA7i+UbvCvg5EBjjCWscExjL943lAzDOViCJrXGG0bOr/BrdMMaN1WqZ1suTk7Qeh/x1AwAvw/evVqnQunlsGB+HsJ4jzzOOGePxKeP1AYCkwZ/XkaEDtN5saEx0OgmNG5XIeJ2aPj8vrOUgtscTvvGj2LhX8I3jv2mc87HRM+OIj9PimB/nGaMXAIAxrDPX7fn83LOWY90fwdgHz3iOUjP0Uhj9wPON8WzCtylt7IR1v9gs8OtE17pVtL54BR8fAkDtAO83Dz9wG63nmrxfy/xJF43jx7iEprv4GHl55wCt796031z3z//3LlovtPM5p0KRj8GLeb4PCzr4MZ0u8HuVHYNbaH28YvQDADVj3mdk7BCtTzR4vXaQ388VKnyfm3E3rY/meP/IZNtoHQAaDf47I5PDtL5nkm/rcJr3nKiN78NAD3+dD23bQespYzsBYNkafo8ZpIZovbPUYS7rePRJWBEREREREREREZEW0iSsiIiIiIiIiIiISAtpElZERERERERERESkhTQJKyIiIiIiIiIiItJCmoQVERERERERERERaSE79vIodSMlPmtM49aN5OB0wNMUwxmCHxMreTfPE8x27OWJcb6Rhh0aKcRhyNPTarUarZfLPHUXAHxjH6y04WKGp2Tn8zwZzjdSMDNG0ne+wJ+7RsNOAh4c5ul2MfjvpNJ8n7vaecp4f3cnrQ8MGMl9RsL9xOgIrQPA5NgorXd283UMHho0lyWnXjPir3mQ4edwVx8/1polow817cRE60fNmP8gifg2WYG1npFtbiZhG3WkeO8AgFSK/04zz5+Pegc/L1Z1LKD1ru52Wi+180tNqcB7cjZnX5pqIU8QbYDXkzR/PoK0sQ7reTXq6Qx/7gLjegMAaWPdgZGAnJi55zJfag2eJp5K8dfWOl8D4/H+DOexHxi/Y4wzAp8fV76VuB3w5XjG8hOjB4ZWLDKAyEhEbxrnd2CMQZuTE3z5xj4X63z8Fhvb6lv9AEC9ypcFI03cEhuJ6BbreU1ZvW6GZPXhAwdpvVnn49kZng6ZD9YpnOYvlG+kTqdTxs1cPMNndRKj3xgbZR06icfPeS/hv5FN8+V3tXfRum+uGYgifi5FMa8HgbFNWWNMGfLn2xrvxUYvtfolAExMTNJ6Yow144D3iXGP/0Kqlz+vy9aupfWurl5a3/MAT4wHgKEt2/i6jdchZxzfMn+SuELro0P8WrJvD5+rOfPiFbTeKNvXydEhPg748fd/Teuhb9xHrOXH26Imr/e099D6uoGNtD4yMUbrAHCwwucbAuPepuAXaL2e6aT1h+64n9b3HeRjgIVLVtP68MNbaR0AGsY4zep3+QWdtL5swzpa71q2jNbLNd4DfeO61rOQ38MCQJLnr/XoBD+OR8f5Ps+GPgkrIiIiIiIiIiIi0kKahBURERERERERERFpIU3CioiIiIiIiIiIiLSQJmFFREREREREREREWkiTsCIiIiIiIiIiIiItZEdQH8VKgc0aSZEFY8lx00hOs8NbEYMnNsZG9GNsJHOGDZ6sl0RG+riRWGvVrVRLwE4tHhkZofVh43lqL/G0944unmLebqQc55Cj9Sjm6fMAkDISTIMsf77rNb6srJHQbi0/rPA0wbDClz85OkTrABA3eaJ1LsvTQmszpArLqWcl/nZ2l2i9VODHf2T0grBpn8NhxH+WGKmPvs+boGe892WlcPtWsrmR+pgy0o8BIJ/iy2pr432lv9RB66VsntaLGV7PGOdXwwiAn8zY7w9WrTRjz+h1Rsp8xkiYT2d4yrGVJG8mxs+QeN5oNPk2ZYy6kQYt8yed5ddQ63xNG8eJNTZIjOMZsFPGPeuQi62xDD+XEPFrcWSMceLQuHY3+fEMAI0GvxZXjXTdqMqTl8Mqf3zR2KZ8B08zDo1zslnj2wnYPdviWY+3EtGN1zMB/0HRGO+Vx/k4EwDGx0etlVDWdU3mRxAafaJh3R/xcXMCfvwHMC7SM/zMOs5jI+neMxqXVY9Dvq2VCk9It67R///SaDWx7i+bvK/Umsb4wBjveVZ/t1qKPZxAZLx21gUhNsYybQu6aL1v7Upa943n7sFf3ULr9YP2vVlgXHMC47WLZxhfyfwYPcCvMw/c9hCt18q8FwU5PrbqWdpprrtR5cvas3mQ1m/GXbSezvOeNt43TOvtw3ybFi1YReudbb20DgCZND/WCx6/J+kr8GX1rSjQ+vKONlr/6c2/pvVt5f20PljeQ+sA0NM5QOuLly2n9SVLFtL60kVL+bqH+DE2CT5HaTXOtjbe6wCgHpf5DyL+vC5YbI8Rj0efhBURERERERERERFpIU3CioiIiIiIiIiIiLSQJmFFREREREREREREWkiTsCIiIiIiIiIiIiItpElYERERERERERERkRbykpkinEVERERERERERETkpOiTsCIiIiIiIiIiIiItpElYERERERERERERkRbSJKyIiIiIiIiIiIhIC2kSVkRERERERERERKSFNAkrIiIiIiIiIiIi0kKahBURERERERERERFpIU3CioiIiIiIiIiIiLSQJmFFREREREREREREWkiTsCIiIiIiIiIiIiItpElYERERERERERERkRbSJKyIiIiIiIiIiIhIC2kSVkRERERERERERKSFNAkrIiIiIiIiIiIi0kKahBURERERERERERFpIU3CioiIiIiIiIiIiLSQJmFFROS08oUvAJ2dMz/mfe8Dzjtv+r9f9zrgyitbtUUiIiIiIiKPP7o3m1uahG0Bz5v53+ted/xlvO99/Hd/+MNWb72InApz0Sem7N4NZDLA+vWPbFtmc2E93bzjHcANN8z3VojI8WhMJCKnk7kaf42PA+95jxt75XLAwADwjGcA3/gGkCSzW8ZPfuLWOTr6CHdGROaM7s1Oju7NZi813xvwWLRv3/T//8pXgD/7M+DBB6dr+fzslrNx47E3GN3dxz6u0XAnuYg8esxVnwDchfplLwN+9jPgF78ALrtszjbztFUquX8icnrTmEhETidz0ZNGR4EnPQkYGwM+9CHgwguBVAr46U+Bd70LuOKKR98Eisjjne7NTo7uzWZPn4RtgYGB6X8dHe6dk6Nrs5FKHfl7AwPuxmLqo90f/jCwaBGwdq17/D33uIt+Pg/09AC/8zvA5OT08sIQeOtb3aCgpwe49lrgta/Vx8RF5sNc9YkkAT7/eeDVrwauugq47rojf84+ZXHnna62fbv7+etf724kpt7pfd/73ONGRoDXvAbo6gIKBeC5zwU2b55eztS7tN/5DrBunXvMS14ClMvA9dcDK1a4373mGiCKpn/veMud8s1vuv6WywHPfCawa9f0z47+kxf2vPzVXwGrVrmeeO65wH/+58zPpYjMPY2JROR0Mhc96f/+XzeGuuUW1zc2bHC9501vcmOsqYmIf/s34IlPBNra3LKvugo4eND9bPt24GlPc/+/q+vEP2knInNL92a6NztVNAk7D6ZOvO3bH/kybrgB2LQJ+N//dSdZpQI85znuxPnVr4Cvfc19YuQtb5n+nY9+FPjSl1xT+MUv3J/RfPObJ7kzItISs+0TP/6xO/+f8Qx3sf/qV4GJidmv59JLgU9+Emhvd+8A79vn/pwEcDcDv/418K1vATfd5C6ez3se0GxO/36lAvzd3wFf/jLwP//jtvu3fxv43vfcvy9+EfinfzryIjvb5f7FX7gBw1S/esUrZr9ff/qnrtf9wz8A990H/NEfAVdf7T6lIiKnD42JROR0cryeFMduzPOqV7k3fo5WKrk3jQD3yfwPfhC46y7XX7Ztm55oXboU+PrX3f9/8EE3/vrbv53bfRGRuaN7M92bzRV9HcE8KBTcOxPp9MyPu+eeIz/SvWEDcOut7v8Xi8C//Mv0n9z98z8D1Srwr//qfgYAn/408IIXuBuN/n7gU58C3v1u4EUvmv759743t/smInNjtn3iuuvcBTAI3J/rrlnj/oTmjW+c3XoymSPf7Z2yebO7EP/iF24wALgJi6VL3Y3ES1/qas2mu5iuXu3++yUvcRf3Awdc/9qwwX3S48c/Bl7+8hNb7qc/DVx8sfvv668HzjzT9cCLLpp5n8pl4K//GvjRj4BLLnG1VauAn/8c+Oxngac+dXbPjYi0nsZEInI6OV5PGhx0nxqbzXc9vuEN0/9/1So3MXLRRe5T+aXS9FeqLFigry8QOd3p3kz3ZnNFk7Dz4KKLgAceOP7j1q1zJ8SUbHb6/5999pHfebZpk/tI99TNBuC+eySO3buruZw78Q4/QYIAuOAC9xgROb3Mpk+MjroAiJ//fLp29dXA5z43+wu9ZdMm90mOqQst4P5kd90697MphcL0RR5wkxsrVhw5WdLfP/3nd7Ndbirl/oRvyvr17gZl06bjX+jvvx+o1dyfyRyu0QCe8ISZf1dETi2NiUTkdHK8njQVuuV5x1/WHXe4P9G9805geHi6v+zc6SZCROTRQ/dmujebK5qEPY1lMu6dE+bwGwvADQiswcDh9aMfM9v0ThE5/fz7v7sL2uEXzSRxg/z773cDfN+frk85/E9LLFZvOLrXHP1usOfx2tSNx2yXO/V7R5vNTc/Uur77XWDx4iN/dvjEjYg8emhMJCKng74+91Unh09OMOUy8KxnuX//9m/u93buBJ79bDfxICKPPbo343RvdiR9J+xjxIYN7l3Wcnm69otfuJN87Vr3kfb+/uk/3QPclzHfcccp31QRmSPXXQe8/e3u3J/6d9dd7k9MPvc595i+Pve/hyd+3nnnkcvJZI78cnbA9ZQwdKETU4aGgIcecn968kjNdrlh6L6baMqDD7p3l2fz538bNrgL+s6dbtLm8H9Llz7ybReRRweNiUSkVXzf/Qnvl74E7N177M/LZTeGeeAB99UFH/kI8OQnu/HL1CfPpkx9gv/oMZiIPDrp3sxeh+7NpmkSdh7ceqs7WPfsmbtlvupV7s/rXvta4N573Xd8XHON+zLo/n73mGuucenB//3f7qR529vcdxrN5t0LETm1jtcn7rwTuP1296ctZ5115L9XvtJ9F2KzOX1xe9/73MX0u98FPvGJI5e1YoX7frIbbnA3DJUKcMYZwAtf6JJ+f/5zN4C4+mr37uULX/jI92u2y02nXc+65Ra3n69/PfAbv3H8P3cBXArxO97hvvD9+uuBrVvd5Mrf/737bxE5fWhMJCKnk9n0pL/8Sze2uvhiN966/373vYqf+5xLB5+cBJYtcxMpn/oU8PDD7utUPvjBI5ezfLnrOd/5DnDokPs9ETk96d5M92ZzRZOw86BScQP+2XzsfLYKBeD733ffN3Thhe4LmJ/+dPflyVOuvdY1gNe8xn0hcqnk/iQml5u77RCRuXG8PnHdde5dRfbu45VXul7w7W+7C+Z//If7RMa557pQmg996MjHX3op8Lu/6z7Z0dcH/NVfufrnP+++I/H5z3c9I0lccM3xvpD+eGaz3ELB9ayrrnKPyeddyudsffCDwJ/9mZtkOfNM1+u+/W1g5cqT23YRmVsaE4nI6WQ2PamrC7j5ZjdR8aEPue80fPKT3XjrYx9zn7bv6wO+8AXga19z47WPfAT4+MePXM7ixcD73w/8yZ+4N4je8paW7pqInATdm+nebK54SaJvwHq8imN3ArzsZce+MysiIiLyeKExkYiIiIi0moK5Hkd27AB+8APgqU8F6nX3iZBt29y7GSIiIiKPFxoTiYiIiMippq8jeBzxffdnMRdeCFx2GXDPPcAPf3hyX+QsIiIi8mijMZGIiIiInGr6OgIRERERERERERGRFtInYUVERERERERERERaSJOwIiJy2vE84JvftH++fbt7zJ13uv/+yU/cf4+OtnzTREREREREHjd0bzZ3NAnbAq97nTvgPA9Ip4FVq4B3vAMol2e/jKmD+Oh/V1/dqq0WkVNpLvrE4Z71LCAIgJtvfmS/f7wL6+lm6VJg3z7grLPme0tEZCYaE4nI6WQux19f/zpw+eVARwdQKgHnnAN84APA8PDsl7FiBfDJT574ukVkbune7OTo3mz2UvO9AY9Vz3kO8PnPA80mcOONwBvf6E7gf/iHE1vOD38IbNw4/d/5/LGPSRIgioCUXk2RR5W56hM7dwI33QS85S3AddcBv/Ebrdne00kQAAMD870VIjIbGhOJyOlkLnrSe94DfPSjwB/9EfCXfwksWgRs3gz84z8CX/wi8La3tW77RaQ1dG/2yOnebPb0SdgWyWbdQbh0KXDVVcCrXvXI3sno6XHLmfrX0TH90e7vfx944hPdum68EajXgbe+FViwAMjlgCc9CfjVr45c3re+BZxxhrtxedrTgOuv18fERebLXPWJz38eeP7zgd/7PeArXzn2HVv2KYvzzgPe977pnwPAi17k+sHUfwNu0LF6NZDJAOvWuRuLw3ke8NnPuvUXCi5Z/KabgC1b3KdDikXgkkuArVuP/L3jLRdw76Y+97muX61cCXzta9M/O/pPXphf/hJ4ylPc7y9d6vrjI303W0QeOY2JROR0crI96dZb3cTrJz4BfOxjwKWXurHTM5/pPh372te6x23dCrzwhUB/v/uk7IUXujeTplx+ObBjh5vInfoEnojMH92b6d7sVNAk7CmSz7t3VKasWDF9kj1S73oX8OEPA5s2uT9/ede73IX/+uuB228H1qwBnv3s6T+J2b4deMlLgCuvdCfHm9/s3sUVkdPDI+kTSeIu9FdfDaxfD6xdC3z1qye23qmJic9/3l1cp/77v/7LfZLj7W8H7r3X9YzXvx748Y+P/P0PfhB4zWtcX1m/3g1a3vxm4N3vBn79a/eYt7xl+vGzXe573wu8+MXAXXe5/XvlK12/m4177nH977d/G7j7bjcA+vnPj9wOEZkfGhOJyOnkRHvSl77kJlV///f5zzs73f9OTgLPe56beL3jDteDXvAC9yk5APjGN4AlS9xXGOzb5/6JyOlD92ZHLlf3ZnMkkTn32tcmyQtfOP3ft9ySJD09SfKyl03XrrgiST71KXsZ27YlCZAk+XySFIvT/26/PUl+/GP3s29+c/rxk5NJkk4nyZe+NF1rNJJk0aIk+au/cv997bVJctZZR67nPe9xyxoZeUS7KiKP0Fz0iSRJkh/8IEn6+pKk2XT//Td/kySXXXbkY5Yvd/XDnXtukvz5n0//N5Ak//VfRz7m0kuT5E1vOrL20pcmyfOed+Tv/emfTv/3TTe52nXXTdf+4z+SJJc78eX+7u8e+ZiLL06S3/s99/+neuQdd7j/nuqLU73s1a9Okt/5nSN//8Ybk8T3k6RaTUTkFNGYSEROJ3PRk5773CQ555xHtv4NG45cNhujicipp3uz4y9X92ZzQ9+Y1SLf+Y57hzQM3bsnL3wh8KlPTf/8hhtmt5yvfMV9hHzK0qXu4+SA+7O7KVu3uvVcdtl0LZ0GLrpo+t2JBx90fwZzuIsumv0+icjcmos+cd11wMtfPv39h698JfDOd7rzfd26k9u+TZuA3/mdI2uXXQb87d8eWTvnnOn/39/v/vfss4+s1WrA+DjQ3j775V5yybH/PdOfuBzuttvcn9186UvTtSQB4hjYtu3IvioiraUxkYicTk62JyXJ7L46oFwG3v9+t769e936qtXpT8KKyOlF92YzL1f3ZnNDk7At8rSnue/VSKfdF7Wn049sOUuXuj+hY4rF6f+fJO5/jx4QHD5IYAOGqd8TkVPvZPvE8LD7nqJm88gvjI8i4HOfc4ERAOD7x57rh/9pzUxm6ilTDt/uqZ+xWhyf2HJnsz2WOHZ/SvPWtx77s2XLZrcMEZkbGhOJyOnkZHvS2rXuz2ibzZl/953vdN9X/fGPu96Vz7uvQWk0Tm77RaQ1dG8283Jnsz0W3ZtN03fCtkix6C62y5c/8puNE7FmjfsS5Z//fLrWbLrv/Jh6V2H9+mNDKaa+E0RETr2T7RNf+pL7LrG77nLvQk79++Qn3fcghqF7XF/fkd8zNj7u3nE8XDrtBgiHO/PMI3sK4L5Q/WTfqZztcm+++dj/Xr9+dus4/3zgvvvc83v0v0zmkW+7iJw4jYlE5HRysj3pqqvc971+5jP851PhfjfeCLzudS5c5+yzXeDP9u1HPjaTOXb8JSLzQ/dmMy9X92ZzQ5Ow8+TpTwc+/em5W16x6NL33vlO4H/+B7j/fuBNbwIqFeD//B/3mDe/GXjgAeDaa4GHHnJfEP2FL7ifKY1T5PRzvD5x3XXuExVnnXXkvze8wd0AfPe77nFXXOESLm+80X3Z+mtfCwTBkctascL9ic3+/cDIiKu9852uR/zjPwKbNwN//dcuROId7zi5/Zrtcr/2Nfeu8UMPAX/+5y6NeLZf3n7tte7PlP/gD9zgZ/Nml4R+zTUnt+0iMvc0JhKR08nxetLFF7vwv7e/3f3vTTcBO3a4cdRLX+omWwA3ufCNb7hxyF13ucnbwz95Brjx189+BuzZAwwOtmqPRGQu6N5M92ZzQZOw82Tr1rm/0H7kIy6t7tWvdu80bNni/gSmq8v9fOVK4D//051Q55zjPiI/lQSczc7ttojIyZupT9x2mxvQv/jFx/6srQ141rPcQABwSZhPeQrw/Oe7lN4rrwRWrz7ydz7xCeB//9f9ue8TnuBqV17pvgvoYx8DNm4EPvtZl9J5+eUnt1+zXe773w98+cuuX11/vXt3ecOG2a3jnHOAn/7UXeCf/GS3T+99L7Bw4cltu4jMPY2JROR0Mpue9NGPAv/+78Att7jE740bgT/+Y9dPXvta95i/+RvXcy69FHjBC9zjzj//yOV84APu07GrV7tPx4nI6Uv3Zro3mwtekugbsB7P/uIv3Dseu3bN95aIiIiIzB+NiURERESklRTM9Tjzmc+4NOCeHuAXv3Dvdsz2I+QiIiIijxUaE4mIiIjIqaRJ2MeZzZuBD33IJfctW+a+y+jd757vrRIRERE5tTQmEhEREZFTSV9HICIiIiIiIiIiItJCCuYSERERERERERERaSFNwoqIiIiIiIiIiIi0kCZhRURERERERERERFpIk7AiIiIiIiIiIiIiLZSa7QO/c+1LaP2Bgwdp/Wd3baX1YqFA6xeesdRcd2fC54qTcpXWm0lI6+lSntZ9ny9/fHyC1rPZLK3DD3gdwFiFb+tYvU7rUSpD67lSD60Plxu0vv8Qf31Q5c9RezrHHw8AHi+HiGm93OT7ls3z1yEM+XLiZkTrpSzf1r5u/hwBwM4DB2i93GjSurHL+Nad95vrkNa5fm07rS8s8WNnIMfPyZzHj/+2nJ1T2FniR0Pg82Mn8vhx66f5cpp8kzBR5ftWrfPlREa/BIDA6HVN8P0eKfN9Kzf4uhNjOVH7aloPL7iA1sd/+hNaB4CDKb7uAw3eM7vLh2h920iab1OJH2Molfh6KxVa76jzOgBky2VarwT8tQ5i/rxeP8j7vrTeS177Mlq3zgErAzUM+Ymf8qyrD5Ay3j/PZIq07lnvt3v8/A7SvJ7J8eOtWuXX+mbdHhM1G/xnccTP4zDi21QL+bkURXxb45ifY0nCn+84sq8JYWi9prz3N5t8H060HhsXi8TYN3+GY6ne4M9TaKzbOl4P7jXGmtJSA70DtB76/PrmN/m9yFnL+2j9/7zkufa6O63xBD+mmk1+71SrG2Mln19D27NGXzGuk0YZAGBFU1u/4gV8nyOjT4yO8964eSe/F9l6YJjWOxYsMrYICGK+TRvPWELrZ67qp3Wvyu95M0b/CI0nz/ONsbJnj02TyOjLET824oQ//tLf/bC5Dmmthx64m9brxjxHE/za3WjwHtXTtthcd2gMhet1vo7hEX7+xcb80cQoX0FttEbrgXHvORTx7QGAVIH37PEJfl4GRi8aGOC9fGABv1YsMXpLCsY9UmTf24QRf62LhQ5aTxJ+fjfq/PnetX8HrY9NjNJ6ybhvayvxuUgA2Ll/L61Xa/y19oyX9NVX/b65jin6JKyIiIiIiIiIiIhIC2kSVkRERERERERERKSFNAkrIiIiIiIiIiIi0kKahBURERERERERERFpIU3CioiIiIiIiIiIiLRQarYPTBuJ0Y2dO2n9gvUraL2700gqs0N0gUmenpbkebpZZzFP63HEE/ciI30xn+VPj+fxVMawxlPhAKA9zVPmYKy7bCTDBQGPYfOM1LaMMc1eM7I/eR6uY+yBGS+aNub4J0fGaD020jE72tpovZDlKcqekZoJAMUcT2dNGa9PMsOy5NR72jJeb08baaxpnnQ5WeXnl5/YjSgJ+ToaRiJ1rWEkVfu8r9RD/ngjXBflppHMbWwPABirRmSEZ09U+Q/KRqMIjRTdSnmI1h/+3g203pFM8hUASIz9NoLeEQZ8m0qlXlrfUuL95p5RnqbaYaQid9qB5MgYh1loXFuCRO+Xnm6sBGgrVtubIaGeLmaGa4+V3G0lzfrG8RYlvA+GDSPuNcWXn84Y6dlNe0wE4/mIYf3OiSZuG9f0mDcKI2gYzcQeFcUhfz6sOPYkMpZlbJMX8+uXF1vrNY6ZGY49a1kp4/jOZPi4S+aJ9doa43Lr8UOj47Rers5wX7OMp22XG/z63Uz4sdMwx1a8HjX5+dJeyNF6ENjjutg4Z6KQn3txmt9D+Dl+b5sv8OUXq3w5jQP8Xm7bzoO0DgAr+ntoffEinnpeKvJ7Zy9lnPNGj236vHfEvjFGsy5csHtpYr0O1vEt8yZd5OdZypirSTx+vjZr/PyOjXskACiW+PkXNfm8T2Wc9ygvz4/17r4uvk0F/vjYGL8t6+HbCQDZPO8JQcBv3Aqd/HktlPjzmkkZc1rWEMq4VkRN+36kXuXHQGKMNVPGvmUKHbS+oGsJrXd3dNN6FPN+WiwVaR0ARoYnaL0z20nr7X38nnE2dGcnIiIiIiIiIiIi0kKahBURERERERERERFpIU3CioiIiIiIiIiIiLSQJmFFREREREREREREWkiTsCIiIiIiIiIiIiItZGRlHys04nV7Onki2cDCPlpv1HnqbmOcp5EBwGS9QutBhqebRUaqa9zgKYu5LE+kA04sNdMKSwaAZp0n9BWMxN9Uis+PZwKeCNlM8W09ZDx35RpPogw8nigMAOks/1k+naf1NiORtC3Pkw9zGb58/wTTX+s1vs8AYASlwzdSiH0zNlDmw+I0T1iMjGTVmpEjXmnwx0f8MAAANPiqETX5uWeFCluhro2IH2uTRiBo2QjINjYHABAYfSUyYmsnjRTMmpFmXDeWEzaN8yvmT9J41tg5AKWY95WMse5DHn/8nnbe9+8f59eobSO8r6wy1pvK2onMOSM5NTZS1Y3DWOaRlaqdGK9hYryI1mseR/w6CQCpDD92Y+M6Nj4+TOuZHN+HVJavu2aMY0pFPhZr67THExPjfFnNSV6Hz5PV/YjXI+tcioznOzGuCU2ergsAnrEsGCnOSZP3O884lnxjmwJjsBmk+POdNuoAkOR4krJnrCOlMdGjgmf0G98Yl49V+HG+d5D3DgA4d/1CWm8Yx3+lYdy/BDwJG8VOWh6b2Efr9QpffmcHv0cBAHh8Wz3fGEgZ94telq+jy0htP6vI75Enanwfbr3tdr49AHJ5fg539fXQepAxxiwpo69Y44/ESLH3+HXIGCq5RXlG/zXGb/FMg3WZF6U8nw9KjJue2Jhj8Qr88V5iT7JkjHmIWp33tUaTL6vatG70+LikXi3QeiHPr5PVSWP5AMoT/BwY6O+k9XTC97k8ys/LTCcfK1Wrxnmc5vc8KfvWBlHCz8tqmb8OxSwfO+bz/Bjo7eE9LY7aaX28epDW6017ztGa18wE/PkOrDmqWdBoSkRERERERERERKSFNAkrIiIiIiIiIiIi0kKahBURERERERERERFpIU3CioiIiIiIiIiIiLSQJmFFREREREREREREWig12wc2jSTCBf0DtJ7L8vnddMBTHGMjmROAmV6Zz/PE1yTh6XOpgCeY5XM87TIKjYQ5IxouYyRUAsDkxCRfh5Gum87wFLaJ8VFab/ONNMGIp/FOGEl13gyHRNpKMjSSD1NpnsTXWeBpgkUjdTQyEp9DI2F8dHyc1gEgbPL0wc5SG637vt6nOJ0MjfJzuxbz1ynK8h5RTYxzNcWPQQAYN46rqMnXXeOnHppGwmcII60z4cuvGOnf4QwJomkjEbRpJNPWY97rapGxD0avTiKjhxunlxESCgAYC/k2+Z6R/Gkkye9u8OTPaJT3xgUx741dKb6xbTMEZqat4OXIOI6VSH7a8YxE1MSKgDbKQcBf2zC0o6St36nVeYLv3v27aH31Gj5+Kxb5sV6pGf23wa/RbcZ1FQDaO40fBHxZtTJvqFGD94OwwZ+jJOHXBMT8PPYSuxl5MT+R08bpmsnzHhUYifW+z+vpwFiOkSTuz5DeGxvXkdh4PmA8Xk4vntFwPONaUjPC5ncfGDLXUa7yc7JS5tfWWoVvU76vi6+gjd8rxDl+Do8c3EvrOWu8B6Czjadzp437xZRxb2s1+LQxfovBe2lnnvfeJQM8FRwAVqxZSettPTzlO5XwMU5i9lLj4DDGgX7Cl5OaKUU8xXtpDN6HEn+GQaLMi2Khg9YTY47AEhvX3JmuY4lx/hXbOml9bIKf95N13tPqZX5M7913kNaXLF1E6+Nj9vxEtcF/tuiQMfaJ99F6ocS3ddXKJbReK/O5rs5FvEfF/gitA0CjzF+jNHgvL2WNe0lj7ioIeO+PjXm/KObXokpllNYBoLeLP0/pgB/fk+N8fm82dGcnIiIiIiIiIiIi0kKahBURERERERERERFpIU3CioiIiIiIiIiIiLSQJmFFREREREREREREWkiTsCIiIiIiIiIiIiItxGMYmcRIR4SRUjk2wR+d4altjRmCDvN5nmxZKvBlWSl5QZTnj4/5vpWK/PFWQF/Y5ImTAJAxEi9rFZ7oZj3fCzpKtJ5u8iS55YsX0vpg/RCtN5ozvBBWMKGRfDgxypP+4izf1mw7T1IOUvy9At94CyGbsQ9rK6TRWAWMEGqZJ3s9I9EyyNJ6Kc0TGRt1fpyXK/bxX5k00rZDfmLUmkbdSE8PjcbSSHi9zsNkkZgnKpAxfhb6xrqturFNVjB80+MbmzJOyFRon8P13sW0nu3h9bF9PEE0GTlA6zwvHpjw+T4sL/BjL+3zPgcAyPNriz/J1xEZ1yiZP2Fk9IoTTAL2ZkqMttYd8nGDVU+n+TqsRNmJSZ4oW62PGlvE03UnJvk4AwCKJT6u81P8+csW+PMdeBlar9d4v/YSPma1Unc72vn5DQBWQHcq4P0rCPiY1ZLEvB8ExrgbRl+eKZ06DHlvaTb5a9qoG2NWmRdmYrjxmlvjg9jnx9SeA8PmuodGx2i9WTf6R5kfzx2L+Lpz7d207nv8PqhspHzvP2SneU+MV2m9lOd9paeH36fkc/ycDxv8fKlUy3yDfP66LVi8gD8ewKJVy2jdK/B9SKf4tvoJHy+HNf68wtg3GD0latrjmNj6HVjLMrZJTjvWnIxn9CLf49fJmcZK1rF16OBBWt+06T5aHx7n1/t8kZ9/Q8P8PmL/IWtcYs8TVauDtL7lIX6s12p8jqVQ4s/TPX1DfMUJn69buIzfb69cb4w/AFgjnK4s7y3ZTt7LaxV+bQl93nO8NF9zrcavRc2Q930AaET8+cjm+bFRaOP7NhuaYhIRERERERERERFpIU3CioiIiIiIiIiIiLSQJmFFREREREREREREWkiTsCIiIiIiIiIiIiItpElYERERERERERERkRbSJKyIiIiIiIiIiIhIC6Vm+8BMPk/r9YZH6wcOTND6ov5uWs/mc+a6oyjiP0h4ORXwbfI8XoefNpbP1+tFdf54a/kAMhm+f9Vqg9bHaxVa71rAn7+eOEPrSXuW1kOPP37w0DitA8DSnh5az6T5YTR0aJTW08a6w7BJ67HxXkES8Ho+ax9LuQx/jeKYH0yZlHFsyLzY55dovZwYx/9QjdZr4/z8qtaNXgMgsOoJPw5rET+m6l5M65Hxllji8fMrNtbrJXYfCo2mGVm/YvU0o56yttV48oIopPViwF9nAMidfR6tb/X4eX+ozvtKV8LrE+ODtN5T4r1gWXuR1kvG6wMAic+fp1q9TOtekz9PMn8i63plXEvM4YfPT44kMQY4ACoV3r8i43zq6ODn08TkCF+3z49DP+BjH983+qbxXABAucLXAfDnNfD4svK5LlrvH1hA69kUr/seP799Y70AkDL6aRzy18H3eU9oGud3aNR98G2NmvzaUq8bY1YAYYP/rGH8zkzLklPPuq9JGfXEvKbzPnRgeNRc956D/FrZ18HHY4Ex9mkYvaAny+87M4UOWi+Whmh93+59tA4Ahyr8nidI+LnXv7CX1tvbjTGLMbgaGZ+kdb/UTuuL+gf48gEUOvnzcWCU9/e2PB9/FHN8DJXO8dchDHgfsu4JrTE0ADTr/F44iPgxEzb54+X048G+J2GssY9nXD8BIGzyMUg+W+D1In/8nk17ab17AR9n+MZ4ohnyo93z+f0CAJSMe4lUis/jJMb98MQEHx9OjFVp3ff5871jxyFaP7DPnhe5/BnLab29k/cQP+C9IuPxx9dC3jfrtVFar07w8crgMJ+jBACrtaSMebyeEt/n2dAnYUVERERERERERERaSJOwIiIiIiIiIiIiIi2kSVgRERERERERERGRFtIkrIiIiIiIiIiIiEgLaRJWREREREREREREpIV4LBlR7Oih9X3bdtB6I+bzu7kcT6qLZkg6TIr8dxDzxD0rNTFf4Imdoc/rGSPJM57k6WyZjLGdAJAyEpCNUOGGkdg5ZiTZZo1U8u4cfx0uWM4TPkfaePobACRNnqCXpHi9kuE71zBSDK346HLZSmrmz2m+YL8O1u8ExuuTCk4s1VFaa9M+fu41G0aCtXHMxhE/Bn3ffr1jj59LmYT/Tj3h/cM3kkL9iG+rbxyDgXHO+zOkqlsJ48auIUgZPzCePyR8m4zLAdJGmnvSzZNIAWBbyJ+PWx7eRuvjwzwxeV0Pv6a1Jfz6sdKI9i16fB+CmvEcAYDRx5OEp5rOdFzK/IiNYzc2zvskNs5vI/HXOFUBAJPD/Jo4NHSA1nNtfDldS4wxUYqn6KaMY93aWH+GnQjrxlgmw0+0tixPCPYjvhw/w68VpZKxbwEfN0xW7PM4jHmvsMYNaeNzD806f57CGl9vI27y5YS8HjaMBQGImvz5s+qeNWiVeWFdosMmP1c9n59fvjGOmazZ92bDMV/WGctX0np2gh+fccCPqcAYmBhh3mgr8bTwme4JRgYP8t/J8gTwQ0O8r2zfzZfTXuLNt1zl52R3Xx+tb1i9ntYBoLuH389NVvg2IeZ9P0j4uMsz7rX9tDEuyRjp6R5//QEgSPPjzBr65I17OTn9JDPckzCeMRcQNuzjZ/jQiLEsfqyvWHkBrd997x20PrBogNa7uztpvaerSOvlCr+uAkCtyY/pYmc7rTeNua5aja+jNs7HPrU677+ZNH/dRsd20zoAbN08QevLl/DHW70/VcrTujfGj4Hhg7toPTTmBupjfJwOAMMhn3/r6OD17oJ9XB6PPgkrIiIiIiIiIiIi0kKahBURERERERERERFpIU3CioiIiIiIiIiIiLSQJmFFREREREREREREWkiTsCIiIiIiIiIiIiItxKOsibqRaL9j505aX758BV+OkQjpx3ZSmW8k5SVGCnG+wFPVUlmePJcY6WlZY71ewNP2mkbqOQCEIX/+ihme+FuPeZpn7Bn7EPDlWGm8QWgkehf4vgHAtj37aT1jpdgZAZm1Gk/oC2L+CxMVnhieNdKSM0YdAGIjpTGd5uuOIvu4lFPvwAg/drLg50VghHJ6RuRq1kgOBoAIfGGxcY4lRjK4EfiLwDg2U8YvGAHcCIy+BQA5nx/nIYxE9xR/PuppI83YOI98Iy3Xi3K0PtjOU44BYNM+3oce3vwArafqvH/kIp4ofEbAn4tilS+n4fHnIqwbSfIA0hF/rQPjdYiN41vmTxTxRFQr2RdG/0isvtK0rz1hgx9biXFdr5TLtJ6p8+t95PPHp4zrYdpIVveNMRoAZALe1zyj5/hGEns+zYex5foQrY+M8TFoocgThb0UTyYGgEzaSm/n+z05NEbrYdU4Zoz+aB0zMK45KetiASBlXr94fabjUk69yy83Ur7vupfWR0ZGaT2d5sfaU6+4zFz3+U9+Cq23lfjxNtnkCdbNOj/3mk2jxxrX6E4jRXz1mjNoHQAyRr+JIp48XinzccDEoWFa9417M8+6lwuN+1Fj7AYAGZ/38dh4/krtPbS+eGAlrTcbfNztZ/k21Y3nbv+B7bQOAOkMP2byeX5/mc7wusyfxLiHscY+Fj/g1/SRYZ5ODwCDh/j1vrO7g9abDX6P4Rn3gCtW8t5y5poltN5R4v00bYwZAOCOB/g+7NnPx2MIjB5i3C/0LGij9UqVn6+e0XPWncn7BADs2cOvOz/72W20/hsXnE/r7YVOWq9WJ/nje3hPixI+3ku32a/D3n37eH0zv/fsyvXRem+Pfd2Zok/CioiIiIiIiIiIiLSQJmFFREREREREREREWkiTsCIiIiIiIiIiIiItpElYERERERERERERkRbSJKyIiIiIiIiIiIhIC/EIOmLnLp4WNrBgIa1bWc7lSZ4sWZohMS6OeeJv2kh8DY3HB8buBuCPr0/wbU3HRoJ1xn46K0a6ZNTg6ZUNI4W4YezDRJMnwHXkeLpdwXiB2owkSgDo7u2i9WIPTx+s+Dzpb7gySuuRkezc2c3Xm83y1FE7oRFIGcmHM/2OnD4i4/i3kmZTRlq0Z6R1BjMcBtaP0kaKtJVg7RuPTxuPT/n88YFv9L+C3YfCHn4u5Y3E62yOp+5OGj0zlfB6M+L7UDX60ERoXw8OGimoXsJ7aVuaP68La7y/LzDSNKMkovXYuA7VjWMPAIwwefgxf+0itafTjn+Cr0lgXHus61hmhvN4xZJFtD46xBNiN23hybRJxM8Za9+KeX6tb8vxpOEk5ssHgIxx3hhlVOsTtO77vHelc7yHNCN+fk9WdtJ6JtfJNwhA2uevXcpId07n+RMb8XB45IIC3yZjfNgMeY+yehcAIOHLspLPU8Y1QebHy175HFq//GkX0Pq9995P67kcP9YuvvQyc91t7fy8jxo8xbxW5Qf6nj27aL1Q4snjA4v7aT2d4cdmb28vrQNAMc/P4eGhg7R+6MAhWo/6T+yCkErxHuEbiedj43YyfL6Lv3bw+HmfNa4tScD7dezz9PRmyJPK/z/2/jtekuyu7/8/1dW5+/btG+dODjubg3a1UVpFtApIGGT0RUaAQWAENtEmOYERGDCYaLAxYAuBbWSRhEAgFACF1SZt0OaZndndyeHm0DlV/f6o33g2vD93Z3a3966k1/Px2Afoc/tWVVedc+rUuT39XlxZ0PVlfZ3NzIpF/exZHtkh65msHp+wkZybt1MPnJfHzhqLrXMfyzn9OMzoMWF2dsnZkj6olSU9b7jtziN6K86zzY2v1GOamVltrSHrq8u6XijlZT12HjD6zthSKuj68ppet+oORmTdzGx0XL+/1fllvY+5FVmPR/V4mino9zw+Oi3rNWcsOjV3QtbNzDor+j4VRXpOuXBa3xP2XODu4v/hk7AAAAAAAAAAMEQswgIAAAAAAADAELEICwAAAAAAAABDxCIsAAAAAAAAAAwRi7AAAAAAAAAAMER+/O4zxIFOIgxTOg27vroq69OjFVnPpr1UPTNzEhszTvJjra4TG/uxTlsrZ3QyXLFSkvVeX2+nNvDTGjtZvd4dRTp1slAZl/VBV5/vtQWdGN5b1Yl+myo63S4c+Nchk9GpdBknVTVf0cfaOq5T8gppff4yOSeN10mHjyI/pTQIncTkjr4OoZMmiI0RpnQb8dK80+a1BT12pNx0T7PAaVcp509Zae8HTnJlyokKzaR1+y+N6bG0PeKPQ4OK7qvxok7BHHR0SulgoPt2w0lbj9I6RbmT12PsSs/vd+VCVdZ37dTpuoW+ThVOD3QbWO0640qzqbcTOUmkps+RmdnAiU4NYt1mYrcdY6OMlHSbLhR0O6xUdH+tjOj6iDP/MDMbG9X37y/dfaesZ47o9pZ2Bs7YvNfrOcBoZUK/fp15XS6np5/djp6z1Ff02DJI6STbVEqPXd4tPe7XZL0f6bHRzCwV62sUppw5kXPdgoE+qFRTj1GhOenRzj0nyOnrZmYWmE6VNm/MGTj7xoYYG9PjULmkx6HJaf1skc/p1+cKevtmZilnPp0K9Jxl4LSdXk/34WZL98l6Q/e7bMY7Hn8cKhZ0X+0UnblJTh/Tak2nbY9Wq7IeOXPNTl/3+U5Xj39mZp22HqMmJvW+K2POs22sr0Om4MXYO8//bZ1I3o/1HMrMrN7S+15e1denWPLvj9gYcaTbrnsvCXR/HThz88B7pjKzlZpuiweePCbrC8u6LaacZ8x0Vt8nV+vOOsea7q/7Dui1mmRbeh3Cm//3nDEhk9bzia7evBWyzhqLc6vvrzMW5bNVWV8NN+tdBPr+MjG9VdZzRW8u47SxUT3PrFb1GqWZWXVEH+topSrrGedeey74JCwAAAAAAAAADBGLsAAAAAAAAAAwRCzCAgAAAAAAAMAQsQgLAAAAAAAAAEPEIiwAAAAAAAAADJGODRMWFldkfe74IVl/xWUXyXo+q5PN+l0/gbaYc9K+nYTuqpNAa4FOt8s66bodJ/lx1UmMWzQ/rTEs6mMqlPQ6+PjMJlnP1HSyXrOrE4VrC0t6O22dPtiK/dS7fko3l5U1ve/luj6v86sNWd9W1Ql99aZ+/SDSFyKTcZL+zCxwAvSyGd3G1ktVxUsv51yOdKwvbOi8Por1D9a92l5ArLNvp2yxk0g+cBLJ+2k9btXTup3P1XR/NDPLp/UY1cw4ad5jetyq7NDpkTt375T1zdsvk/VwXKeqN79wm6ybmXUW9PubPaZTUE88ep+sn95UlfW1jE6rT8/qxN9qrS7rg9hLijWLnXElFen6wBu4sGEuvehiWS+XddpryUlzzuV0/w6zejwwM3Nuxba8uibrcaznGTnnXtno6LnPwppu66OlqqyPjPpzIi9tOHYS162p79Gx089iJ0k5GuiI4DD0+us6c6KePk8D03OfflrPWcKMbjP5vE7dLef1uQsi3TAGkT9+9J3E+oGTdN03f1zDSy+T0W0kjnS7LTjh0hlnnpHLeWnUZhlnQtZe089zXSdVe2pKzwPKI857i3Wb9eZ1qZQ/s2u39Xyi2dTp6atreowNnbHU63leL4qcZHjvecfMrObMQUpVff6yzjN1GDrPToEeM6NIj7GZgq4HDf89eFYby7I+0tBz1snJ894FXiT9pu5LqZy+L4WBbiehc+9ut3Q7NDO74wsPyfog1n1gdUUfa6+v97G0tOLs2ZlndPUc4Mkn9bhiZubdplNOv+y09BwxV9Dnu9fTr2/Udb/sOfPG2pr/HioVZ2zJ6455bFaPXeWRmqxPTun9jk1U9X4z+r52xStv0huyddYBnKmp96x/LvgkLAAAAAAAAAAMEYuwAAAAAAAAADBELMICAAAAAAAAwBCxCAsAAAAAAAAAQ8QiLAAAAAAAAAAMkZOx+2yf/odbZX3LuE6/HR3RqdoLc3Oy3qzrJDQzsx3bp2W9UtSpnV5SWeQkxy6t6WPq65A3S09ukfXtW67Wv2BmzVWdlHfyiUN63w2dIjpSdBKWSzoBcK2mz1FU0Nen7aThmZkNevqYluZWZf3hg/q9tfs6e67nRAMGXrKpkzDed1J9zcz6fZ1mHHqpqs4+sDHygb62aSfPMAx0n/fCDN1k7nV4obWRk2jv7jut973Wc1Kqe3pLpQuvdPZgdsnXvEXWJ7Zuk/VU2RlvRiv6mJz99gc6yXaxpxNK99zgJ1e+dsdeWX/kzrtk/XfuvlPWbz98RNZHRkZl/fW7L5X1+Kge5waLJ2TdzGzgtI2Uc/MavJD4TQzF5pkZWc9k9MQh5YwtYUon1kbr3HoGTnMI0/p+3+3oX8gEul+OOOm6jYFOPY9iPUal0v6bmFtakPVcUafZpnI6Ibjf1qNONtDbCZx7QjTQib+ZtJ/oHTvzhkZHb6tv+lpnnAuaj/WxZtNeirne/nqzmMi5Iw1iva2+6XkgNoaXJF4o6GcCr/33uroPh6HfekLnCXIw0Nsq5PV4ky+My3p1TD+npELnucab+69z+1xd0c8vc86z6vLysqzn8nquVBmtynqrpcfSlHM9zRk7zMx6XT1Gra3o5PGuM6csZJ2kd2cE8ea+hWJZ/8B7ljOzQaTHlXZXv4dTc0dlfc9OdxcYsuUTs7Jemp6Q9cKoHkC8eXC/o9dRzMz27tLrRP1IjxX79i/J+vLicVn/0t2nZX1m84WyXsjrsavX9+cT5swnwqyey0TO/KDecJ49+119TM7aTi6vz12zpsdAM7NqpSrr+aK+Hy2fmpf1+rJeE3zt6/Rz2OSUM3Y59yJv/chsndvFEB7D+CQsAAAAAAAAAAwRi7AAAAAAAAAAMEQswgIAAAAAAADAELEICwAAAAAAAABDxCIsAAAAAAAAAAyRk235bA8f1Um2W3fskPWxUZ0MF0Y63a50wW5335WKTlqsremEtk5b72PgRDkutHXqZCGv91ut6lTkclknhpuZNRcPy3o61OngX7rvfllfXNRJcru26vTBzkCvs6edWNNKyUm1NLPaoj7fyy0dGReZTsOLYp3Ed7rWkPVqXh9rwfsTgpMYaGZmGf1Lg4FuG96xYmPknNTM2EldDbx6rNtBap2/S3mtqh86xxQ4aY2xbmvNUCdel/ZcJOuTV10l67lde2TdzGwuPSrrDx3QiaBzszohuLWsE4Vr9RVZX1rWaeErTV2/7qbrZN3M7NU/+gZZL79Wn+97b7pJ1j/yuU/I+sLaKVmfHtEJzjfs2CvrzTWd6mtmlurpn6VNJ733nXaPjROGXhK9N+boeq+r7zE981N0+06w68zMNll/9CF9L+47c5/JySlZ3zztpGqXdXpvuazT0M3MOgOdDt7q6nlAJtT9Ow4y+vVZPR8bdHRCcL/v9LFI90kzs9AZ4wcDPa5FPb3vkaIel6MVfY66PX1ecxln/rbO8OHNfVpOgnq95aQNY0MEKT1+eMn1YVr/oN/X2+n2/MbTH+ifDXq6z0xO6HGl3dX9qF5fk/V0VrfBZkP3u2Cd+2fKGVeyWT0fK4/ocaU4UpX1mS2bZf30aZ22Xi6VZD3lPLOZmfXda6THRm+sG0S6HqT1fSLM6PvKSFnPlSoVnUhvZrZWW5T1KNLXuj/wx2VsjDXnuSDI6/lBGOh21WrrdZFTR064+64UnGf4UPeBUikv691eTdZ73ljX1/d0Z4pm1aqeo5mZ1Ru6f9RW9TNJNNB9I3Ju+ClnTlnI635cLTvzxoFehzIzmz35qKxXxvTcZKyq28bEJv3cWyzqNjMY6PtXEHhX4uWBT8ICAAAAAAAAwBCxCAsAAAAAAAAAQ8QiLAAAAAAAAAAMEYuwAAAAAAAAADBELMICAAAAAAAAwBCxCAsAAAAAAAAAQ5Q+1xdumpyU9Vy+KOuzC6uyngn09svVUXffnW5P1uMwp/dRyMr6cm1Obz/Wp2FmcousZ9MFWV89cVTWzcy6S6dkvVoIZf2SvRfI+gPOuZjYvE3W4ziW9U63I+uZsr6eZmat+QVZX2vpbXX73r77egcp/TeBYl+/PpfWjSmVyujtm1mnp7fV60eyHqb19cHGSJu+Hl3vz0nO5QsGuu2EsTNAmVno/M1qJdBtKmN6W70gL+ujl1yhX79TjwVfnNdj7MrhO2XdzCzK6rHrkSeflPWjTz4u68V4IOtTYyOyfmpxSdY7gR6rX/v618u6mVmj0ZX1Qknfo173j94l63c8+qisHz72hKw/cvyYrGcLFVkPcv49baTTlvUxpy31nXEcG6fj3DPM6RuBcwkHzv0tMv+aez+bHp+Q9V3bdsn6ocMHZN0bZ6d36DYdDPQcKnbmAGZmYyNlWZ9fqjv70OcpHehxOZXWx9SP9Lgcx3ruM4j1/MbMLDJ9TIFzGxn09NiVKutfGBR0fa3ekvViSo/vrZ5/X6u39Zyy1tD7aDZ1HRsjndHtv+3M8aNYj1tRX7eD9Dpz4PljJ2R90NDb2rx9t6wfOa3nB6dO6e3Xm84zhDPn2rJFP8uZmdlAj1G9WJ/XzZv0s9bE1JSsd02fi3xF99WiMy42Wg1ZNzNLOU/ym7Mz+gcD3QaCSM9LzJkXZ1L6GbxS0vehLTPOPdPMWi1nfM/o9jc5rud72Dht537fP7Wo6w09Rp2e1+PB/HG9jmJmtrKkn4dSOf1MkjK9HnTN1a+S9V6s21uhoJ/num09j1lvPB0fu1Dvu6P7Taup12TyWd0vq6O6X1advjQ+pV9fX9PPhWZmve5pWe+39fXpdfS86/Tp47L+wIN6HKxW9XPY2Kh+b1u36XHczCyb08+lsXPvfCH4JCwAAAAAAAAADBGLsAAAAAAAAAAwRCzCAgAAAAAAAMAQsQgLAAAAAAAAAEPEIiwAAAAAAAAADJGTqfhsr73yYlkfKepks3vvf0zWL7toh6xv6vqpY72eThtut3TSbK6gUyfzZZ2SNzOiU9XGncS4Xk+nXa6dPCrrZmaDhk6GG52YlvXJTdt1fcsmWR8Z1e95bW1N1rNZnf62ODsv62ZmQajX7DNOkpyldKJmsazbTCrQ19lLfy2XdSphq623Y2bWjXQ78xKqM6SSv6wETuJ14KQWhimdRBk7SduRF2FuZpGTwt3q6t+JnMjazJ49sr40opPHH3noYVlfWa7J+vikHlPMzPpjeh+DSI+lYVa/52ZN79sKY7KcGS3J+iWXXy3rN77p9Xr7ZtZ27gfpur4OV71Sp52+4U1fK+t/8n//t6zHXd1mHnx8v6yPpDOybmY2FeqfDSK9j4KTsIyNs9bUKa2Bc88Inb95e38Jd26fZmaWce6JhYruZ6+68UZZH8nrFN2FRZ0c/PB9T8p6eUzPAbZu13MuM7NM3hmDBzqhO+u857Qzl0k5qdpZJznY2vq6DTrrzAEi3S8D078TRLped5LPs1k9Xq/2dPJya6DHlU7PH4tqNX2+2x1dD2IvmR4bIUjpaxunnLbpjCvBQPevbOS3neapFVlvLev2fNGFr5D18Um979GqPthaQ89XYmeONj6mU77NzGpr+libx0/K+sKsrs9M62ezOOOc8FD3o36/Jetj43puZWYWhHr+2+/q85QN9TGlTR/TwGkbceTch7L6GW9Q9N9DMa9/VnLuacVS2d0WNohzf8tm9bN6vab73sljR2S957RnM7NuQz+TxJ2OrO/dqrfTinS7OnhEv4dcqN9zq6X3W6vptTEzs3So50uttl7H6XT1PlptPfZ7x3TKGdNsvx4nor7z/GdmPec5KQj0fCyX08c6e1K3jRNH9XbGqnq/oZ2S9atfqc+Fmdn1N13q/kxbZ7L+HPgkLAAAAAAAAAAMEYuwAAAAAAAAADBELMICAAAAAAAAwBCxCAsAAAAAAAAAQ8QiLAAAAAAAAAAMkY7vFnaPV2T91NyCrLe6OsE6MifJ1kkxNzPLZnSabdN0iuTi0rKsl8ersl4q6/TFjJPol0vr9zC2Y5usm5ktzur3lynqfacL+vVpJxGy19epgaMj+vWplF5/b+T1ezMz27xVxwmutnS6Xb5YkPXISc/rtnUab6GqE4K3esez1pR1M7OjJ3Xqsyd4Aal3ePFFXmS4E9icivXrvc10A50ya2bWLesxcHzTxbLebuttrUzNyPq9h47Kejath+lxZ0yenNB1M7PjA91Xu31dL1f0tlIlPTZO7tgl62+89npZf9Pbvk7Wp7bulHUzs25Hn9e0M3a1O3o8yI7qsffKy6+S9dOPPyrriy2dVN4YG5d1M7MrrrhW1qda+liXH/qiuy1sjMFA369CJ6E7cOrpUPfvfF7Pe8zMcjmdWN7r6DnRaFWnVb/xTa+V9f37dVtfuG1R77eu53uVnN8HBgOdsBsM9LacaZflC3qekXXmPj1niA+dKWgrWieR2QnYDZyNpUwnKTdaOgk4LOv30AmcVOS6no9bX4/XZmah8xhQLegTngn9dokN4Exmen0npdqZ0wahHp9Skf9ZnVKo2+dKbUVvK9bj1tj4tKy3WrrvFcr6mJotPSYvLDj9wszCULfz7Tv0HGQtp58hlhdPy/rUjklZrxb1fteWV2R915Ytsm5m1nDmOEvz+n0fflyPQ3su3C3rmYK+fwRpvZ1+pMenlbUlWTczK1f0PkZGdRtzhlJsoGJOjy3Voq4fPXhC1u+79x5Z75i/TnTRjO4fey+7SNazGT0W/dkn9b5XV/TYsrqm38Pcqf2y3mysybqZWSqt399IeUTWvbGr782hnLlm35kU9Xp6/O15kygzC5xn69KI9x70MTVqejw9eULPP6pVvR5Uzunxo908JutmZnsu0Gt5U5v0e4j80/Gc+CQsAAAAAAAAAAwRi7AAAAAAAAAAMEQswgIAAAAAAADAELEICwAAAAAAAABDxCIsAAAAAAAAAAyRjiUTyoGOItzsJNDOrul0xGZTJ8y1207MrJkNBjp6rN/TCXBLy6uyHlb0sU4UdT2f16m7taVlWc+ukxobpvS2ui2dYJqr6rTyuK3PX9zVrx/E+rplnGTA6XUSvSMnJbXW0OngzbZOap5dXJH1QkbH6hVLm2U9n9eJv5WqTiM1Mzu+oPfttZnJESeSGRsijp3oxUjXneZv5qRs9tZJJF+qjsn6+N69st7s650/vqhTwTddeqWsHztyQNYHaec9B36ad9MZJy6/4gpZf9vb3ibrF+7ZJetbt+pUyfHpGVmPnL8DLizp/mhmZhl97fpdPd780R98UNa/8BcfkfUrp3fJeruvj3XZSQq99FJ9Ts3MXnPL18p6enZW1m975EF3W9gYTpCtFbL63prP6rEln9b3mHTGn54NnOTz5eVFWZ+b0wm+l12qk4O37tL99R2lW2R9aUmnXo+U/fE0DnTS7NLycf36SPfvnpMEHDvJvnGgr0/kxW076fPJtnQjCEK9j1RKjxVtZx7YHej3kCo4n5/Qp8Kq6ZL+gZmlu862evqYGs58DxsjTOtxInImP2urOp07aOt2kE75n9UZLU7I+slI38cWF/V9vXrBTllfq+nnwqWlBVkvFIuyHnqDtZnVa7o9j5Qrsl7eqp9H7vvirbIepPV727x1k6wvHtdj9amjh2XdzGxkbFRv67ROGL/js5+S9Yud+8Gr3/BGWZ/ZrhPpW23n/rQ0L+tmZvmSfp7L53T763b1PrBxGqu6Ly2fOiXrtZqzRrCs64NIP7+YmfU26f6UDfX9+8hx3TfmFvQ++v05WZ+o6PY5tfdqfTxFPTcwMzt1ynnucaYg7bae7z35xN2y3mo2ZT3lnKPBQJ+LzZv1OGFmFsV6zvLYvntlPeusRfX7eq1r+/arZb1a3i7rQVGPEx1nLc3MbHFeP6NPz+h7Qhw7E69zwCdhAQAAAAAAAGCIWIQFAAAAAAAAgCFiERYAAAAAAAAAhohFWAAAAAAAAAAYIhZhAQAAAAAAAGCI/PjdZ8hEOmlzrOAk/haqsj5e0XU39dzMMk6q8GhVp6odOa2T+FYbDVm/uKITzx598CFZXzilU/Iuv/ASWTczS2X0PurLOuVz7sAjsh6k9bkoF6uy3nDe88BJFK51dBqpmdnBk/p9HzpyVNZPL+kU1lZP7ztV1O8tinSisBdmnHPai5lZZUKnuR6b09ch29BpgtgYgRMTmQr035N6TkJwL9RD33Ku7O77oZZOimw8clDWC9WqrFcmdPL4mtPWjpzSKZ6xM3rnl1f0D8yssazHgx/9sXfJ+j95z3tkvdvT5yLu6/PdrOvEzI4z3qSdvm1mlg70ePDxP/8LWb/zQ38q64UFnejequsTu3mTl3J8jazf+FqdKGxmNj2tE5azJX2fyI1OudvCxhgp6cT5rDO2ZFK67qWPZ0M/RbcwotOwR6sjst7s6LTXiRndri6Z1Om3++9/WNZnJvV2HjvwmKybme3arZO1s2ndv0+tPinrUaAHi3ZXjy1hRp9vZ5ZhlvKT1TPZgqz3nbDcKHISvVN6fOwO9HvI5J37VF8faz7y59e9pk6iXprT872VmpPgjA0RhLo9p3N6/Fir6bFg0NA9IM74bWe6XJX1Cy6+TNZrDd3WCl09nxifGJf1kYoe/woF3R/n5/X83swssGVZTznjcq+r+3CQ0uPQiaNHZH3rJv0sknVOd7+jz52Z2eToDllvrRRlfaykx499D+jnzlpNj0OXXHWprBeKWVnvDvQ4Z2a2aaueF2ecz4oF64zL2Bjlcd2m61ndDiujurGPTepnqpw5908zK5f0Pg4dPS7rH/6rj8r6INgl69PTuo/NTOl+ny/rudjm7Xtl3cxsbFyvXeVy+r2dPHFAvz6ln0kmJ6qyXhlz1qea+pn06quvl3Uzs9j0WH7XXbfJei6n58XeOFsZ2SPrW7fu1tsv6HGiUtZjlJnZ7Gk999l78SZZD5178Lngk7AAAAAAAAAAMEQswgIAAAAAAADAELEICwAAAAAAAABDxCIsAAAAAAAAAAwRi7AAAAAAAAAAMEROvvazFbN5WR84EfXLqzqBM0jp9LzciE5nMzPrDvRacb+tk77bHZ3OduxxnZJ35WVXy3p9WafATlZ06t34pE7yNDM7/uQxWb/vgQdlfXTTmKwvzi3K+qYpnTS8UNfpdkfn9XZWm21ZNzM7eUInxrWaOjkzX9RJpV7a8KiTDB44UcOVUZ1ObcWcrpvZmJPi3B3sl/XVrp/miQ0w0ONN7ERb9wL9g6hSlfXN19/k7vqhWd1naqf1WNddddpOti7LTx7UbbBb030ydtLTJ0b12GFmlhnTKZujo5Oyfuq0HgOXnITsVksfq3MZbGxU9/lySd9vzMws1m1gZmarrF95+StkvbmsU5Gnd18o65MXXSLrlSk97q8XmFmr6zYzVtTvOxrzryk2Ri7U16qQ0/efipOWOzGm28/M5m3uvsfGdX8tlvSYMLlJv37/4w/pfW+dlvWJ6aqs59P6Xvzwvkdl3cwdyq3gpByHTT1d7UZOqruz39i5WQROKnk6q8+pmVnkBXT39d67PT0fCzJOEnuk7yFZZ7+tNT0nnl/SdTOz7pIes1tOGnuQck4UNkSQ0m0nl9fjkzcvb7b19c6UdX80Mwuyut9PlsuyvhLpZ4WVmr4XTzrj3EhZ7zdf0MdaKunjMTMrFvS4XKvpPtNwJjPTW/X84+jj+2TdS+DOZPT9I532x6FuSx9r3NHjx4W7dML4RFXP62YXdP3I/idlvTqu53Wdnv98OWjrYy1ndDuujI2628LGKIzp694a6D6zsrQi642mvk8O0v69J1/SY8Kh4ydkfd/jB2V965as3n7+Cllv9Rb0fvd9SdYfPaj3a+bPBbdt03PBaKDPxzu+7h2yPjVTlfWVVWde4jzEjIz4fa8/0GP8W96qjykI9GRmMNBjxWhFn6NF53nu4ONHZP34cb2uZGY2P6vb8ZVXXyDrE1P++uVz4ZOwAAAAAAAAADBELMICAAAAAAAAwBCxCAsAAAAAAAAAQ8QiLAAAAAAAAAAMEYuwAAAAAAAAADBEOm5WvdBJ4Fxt6kTNpeUlWZ9s67TLrq2TuFrUydDeMY06CXMf++vPy/qFu3Tq9QW79sr6oLEm66sr+j2bmS0vzct6tVyV9de9+s2yfuzxA7K+f7+un1zUx/r4nE6S65oX92vWH+h0zpmxqqwXyjrV8tSqPk9FJwUz4+Qch86hVrds0T8ws9W+bvJOeKOtOomx2CCDvq73ddJhc0KnfN/47m+V9fy1N7q7/syffkTW60/qdMyor481U9Dpm/XVFVnv1XUfzhV1qm8xr1NCzcwmNukE3zCnf2d2UR9T3Unj9frRWEWnaXacc7Q2e1pvyMzKTnr6NW94o6xnnX0fP6VTUzNV51hjfY9K9XqyHrV14qiZWTTQv3Ps9HFZn23V3G1hY+y94GJZ3zSpx5ypST33qTjtM53W90Mzs46TJO3dE6+++jpZf/yoTup99PHHZL3izBhL1SlZ98Y6M7Pjp0/K+uatOr09ndM7bzuJ6+bMG6JI3ytSpgevdOhPk0NnDhqm9b4HkXPd0noc7HX1sXaaOjm4uaTH5dSCnwSc6en3F6T0tQuc94YN4rZBfV3HJyZkPRvXZb1crbq7ji2n633dRqpFPc84vaafCeZm9T06n9NjZi6vx45MWh+nmVnRmU94/b7V0edp667dsh71dV+dm9Pzxu07d8l6vliWdTOzhbk5WV9zEsNHy/o9F7L6njNW0XOfarEq66VQb2fQ0vMeM7PTh07Jet15ht118R5Zn5i6yd0Hhit25sgZZyzKZPSEpT/Q48eJJX+N5fSi/tn8ku4D5fJmWQ9ive+TJ/RcKe28h7UVfa9vdfS8x8zs5FE9/z/42BOyvn3bTlnPFSuyft+9T8r6ocOHZb1Y0uP16Kie45qZtZxnw37PWUsJnDbQ12PFTTddK+vHjs7K+j133iPrlUpVH4+ZpZ25faOur+nk9Drrl8+BT8ICAAAAAAAAwBCxCAsAAAAAAAAAQ8QiLAAAAAAAAAAMEYuwAAAAAAAAADBELMICAAAAAAAAwBD5sa/PEIR6vbZY0CmLO7Zvl/W8k1LZ7/qpiamsTnaNnKT0VCoj68dPzsv67/zhh2X9H7319bI+WdWp5IU5nZppZrZ6YkX/oKbf99phnRS5taKTTedL+pj2H9JJfEFdJ3ePT2+SdTMzc5LyCk5YbibQPwi7OmHOS4cfTOnE02xGt6VyQb/ezGzzVp3qNz49Juvzp3XqKDbGwEmu7PT0GLHt9W+W9evf+89l/W4nndLMrDKl0zQzpcdlPY513+51dZp3s1bTO/a246T0HjykkzTNzLZfcKmsp3I6Cbvd132129PHVMjrMaJR08f6qY//law/+NB9sm5mNrVJJ7G/9S3vkPULLr5C1tObtsh6bUWnqTY7eszstHXdGeaSba3p83Hb5z8r68dP+e0SG+OG618t67msvi95qbtBoOdWjaYzHpjZnXd9QdbjtO6Xo5N6nrba1nOi5VV939vkpGGvrOkE63DU7wTNpu5nDWfMSad0im7WmcbGzvwjCvS9IuUlO8f+ZxW8n/ScbZnpY4oj51j7kX59S9fLaT336YROMrGZhabPa+i01zjy5+p46aVSTvJ4qMehYrEs682Mc693nrPMzLJ53Xbafd3egq7eVrWsx6dOsy3r/VjPoXo1/fq1VX8snZyekfWC83wxXtHJ4+Wqnk9snhyX9YOPPKi3U3KuT0vPM8zMFhcWZL3d1uepWNTztHRGjx+bNunnzlLRuW7OXKlZ18djZmbOeF3r620dfETPu6/Vt2W8BCKnf4fOGFWq6LYepvXrT5yadfd995f0vjNeP67qtY5+T49dJ489IOtjU7tkPe/042idzz52u3r8skj3y+PHj8r6rbfeIeujo9tkvTKqx64o1vOMlTV/LOr39fxgMNDzrnRa30Myzlzm4Yd1v284a1rZnL4OzrTbzMz6fX0dek77Drzp3jngk7AAAAAAAAAAMEQswgIAAAAAAADAELEICwAAAAAAAABDxCIsAAAAAAAAAAwRi7AAAAAAAAAAMEQswgIAAAAAAADAEKXP9YX5QkHWg0i/vrW8JuvN1bqs91odd98DW5X11fnTsn706HFZT6f0mvPCkt7+n/zVp2R9dHRE1jeNjcu6mdlUmJH11Ired7PRlPXKVEXW5xs1WY9y+hJ34p7e7/K8rJuZxWEo64U4kPXNY6OyPumcv9g5R73+QNZrtZasT3W6sm5mVszr8zE2rs/r8qlZd1t46TX7uq1FxTFZL+y8SNY/edd9sn56ddndd9Xp37l8TtaDQaz3ceKorLc7DVnP5vT2s/myrBcrVVk3M8tk9bZSTt/udnVf6vf7evt6M/axv/yorP+f3/+fsh4HevtmZkFaj+OPPviQrL/v+/+VrF908RV6+6bfxNLikqy3Gvpe12vosd3M7Na/+6SsP3jX7bI+ntZtCRsn6/QlMz1GxYGup0J9T2p29FzJzOzWu/TcZHFV369yFd1nWgPddosl/d7aK3p8bHZXZL0R+eOppfXk8fR8W9bjjp4HZEt63hA453sQ6O1YpPt92qmbmUVdfayttr523YGed/Wd92Zt/R6yPX09KxU956r1/PfQWtPzqIxzSKkBn914OYm962S6X+SyRVlP53Sbrdf1s4WZWSGt5yD5ot5Hu6nnOIV0VtZHxiZkvZfW/eL0Ef3st7xwStbNzNJ53Z6jUI+BUazH63bWGT8y+r3NbNki672Wvg5zJ4/JuplZzTmvI854YFn9PJ9x6rl8XtZbbT12rNV0m+k6z3JmZnlnHh07z5enj82528LGaDvtoR/pPham9BhVHdXP41s3b3P3vbSyIOulkn59Pqf75VJTz4kaTb39wYKeA+Sd57Oxse36gMxsbHRG1oslfT5Onz4g6w888AVZn5jQ56/kjNfNpr6e7Y6ex5iZhWk9DvZ6eo1v5/adst7q6jWwR48fkvVNM3o7F1yg1wDSTtszM+t29Ly13dHHFDhz/nPBbAoAAAAAAAAAhohFWAAAAAAAAAAYIhZhAQAAAAAAAGCIWIQFAAAAAAAAgCFiERYAAAAAAAAAhkjHPAph1kkSa+sU615bJ8YFTkhrfWnF3XdU0Ulsa2s6xW5xXqcmXr5rs6yPTkzJ+vGTp2V9YVmnXh9p6uQ0M7NOSSflTTkJy82cPlH7jx2R9SdmdXJfkNOplmvOdeh29HUz81NY5zs69a7nJAFvHdcp8+mU/ptAr6+TwZ98UqfMT07r1FEzs6Ciz8fYiJMW6m4JG6Hb1+NNfkqnwH7hS/fL+sc+8CFZv+qVr3D3vfcV+me5nO7D/ZbuF82GHrfSTqpkykkzvuKVN8j6zr2XyLqZWaGgtxWGet9953xnMrpnzM+dlPVP/vVHZT2f0X1+fGKTrJuZtbo6sfPJxx+T9b/8sw/L+jd843tkvVbT21900ldtoMfMOz7zaf16M3vwi7fLei7uynrBuX9g4wwCfV/yRAN9A23U9Xhw6Ii+vyXb0v01lxuR9XQQyXrdadNLi0uy3u869cBJjXXGFTOzbKzH7MZpPW52nMTtrXt0cnDGuTxRqMe0WJct6PrJt7FzTYOMvieUcnrczPT1e+439UEFHb3fXEFP6bOTY7JuZnbKuU8NIr3vMM1nN15OBk4bjJ32n8k4bSSv2+bygu53ZmaDst53cbQq64Wcnn9EzjwjFei2lor0fgsp/d4KGZ2EbmY2cFK7Y+dhddDX+66t6kTtlPPglErpcWV1dUXWZ2dPybqZWbGix9LyiL4feKn0kddovPTvQNe97XhzZTOzRkPfQ2rOuN9q+c/b2Bj9QLerQaTbQ89ZU6jV9Jyo6NzfzMy2bbpU1vc/+bisZ9J6LWCkXJX1VntF1ns9PWdvtfU61MzMblk3M5uemZT1y6+8TNY/9xn9vHXoyUdlfc9OvTby2tdeJevHThyX9cVF/YxkZjY6qucadWeee+01et+bN1dl/Vd//TdkvdXSc9Pdu6dlfW5uUdbNzOZO63lxq6XXtPo9fZ9a57bz/zCbAgAAAAAAAIAhYhEWAAAAAAAAAIaIRVgAAAAAAAAAGCIWYQEAAAAAAABgiFiEBQAAAAAAAIAh8qPmnqHvJHCurqzIermo05wzWR0XVlvS2zEzSzsJY7HpxL1d27bK+kU79etPndQpafmKTt29dFInd4fZdVJ0+zpVrTqi9zHnJGQ+cnxW1o+u1PV+Y72d0Ek3z4R+nFvaSdRcc9JCG07Ccr2t00in83rfxa2bZX1hUaeRHtqvU9LNzHZftkfWt47rRL/HnMR6bIyB6RTddqT719Hjh2U9ndJjgZfEamaWdcauarUq6wdPHpH1Xl+naeacMbM4NiXrI9UJWfdSZs3Mxsf170xP6wRJT9pJPT/wyJdkfXVVjwVVJ713eVm/3sxsEOuk90q5JOuP3H+frF90kU5Tndmmxwjv+j/5mB5vDux7RNbNzHIp/R6mnPtBKa+TXLFxap2GrM/Pzcv6ocOHZP3IkaOyXnfmVmZm5YJO0S0UdH+KAz3mLEV6vDt8SB9TP6sTf8OsHpdzoe6TZmbT5RlZnxrX492BWd3PHn74mKyPb9P7ThV03ys4/buS18njZma5gu6v3jRq0NVjc7+jr4/V9XkNe3rqHmX0dooF/zqMVPTPlhdX3N/By4cXaN93njlSof7sTbGgG21sejtmZv2Bbp+R8/mebFbfx4KMfhNxrJ8tuk7SdjGVk/WZcT1emplZWb/vrOk5Thjo8cOcZ4Wo78xZe/q8Li/r55pU6D+uj5T13DGd1r/Td2LpY6cxFYtF/Xpn3p135itR5Jw7M1tdXdX7cJ7zy2V9r8PG6XR1O+x39TN/q6Pvh8urel5y4MBD7r5vvvFVsr5lZpuspzL63t13+mu9qed19bo+1lSg14OeePJBWTczO3XqsN5HQ6/7nD59Wu/beT7rOGNOOqP7a6Go+9imrD8nqozqZ8nUvD7WMKPHqMVVvabV7ujxoNnW5+jv//5vZb3u3EPMzKplfb+ITd9ful19rdeZdv0/fBIWAAAAAAAAAIaIRVgAAAAAAAAAGCIWYQEAAAAAAABgiFiEBQAAAAAAAIAhYhEWAAAAAAAAAIbIj1t8hsWlRVlfXlqR9W1bdCLdaFWn0B9Z0am7ZmYrp07J+s7dF8j61K6dsr5wdJ+sn3hsv97+6CZZD6OMrBdz/uns9XRa3VpdpwNGHZ1iNz6qU9uasU5t63X1djpOPe7plDczs8ZA/04/rc9HkNFr/LNOevumER0lF6R1eun8rE7bizv6OpuZ5Yv6Gm0a06nxF+3VbQwbo+783ahT10nl0ZROUty9Y7usD5xESzM/pbVQKOhtDXQCbZjVfXXUSQUfm9HjWRzrY2019LkwM9u2zUkKTenz2mzqvho452l2VidUpjN6jCiN6PTNopP2a2ZWd97f2opOFa7VlmT98f0Py/rmHbtkPQj09T92+LCs91v63JmZVfN6TMs7ydW2TqowNsZHPvoRWZ91Emvbnbase4nR6UjPGcz8+UGjoRNf2x2dNJtN6bFr+4S+7x1acJK+mzohuFDW2zczG5nUP0sHeh+bt43L+qITcptKOwntevi1TFbPDbLrRNymMnqciqwr6/m8PqZMSY8ti6f1dYv7+t7SrOvXp1P+3HRsvCrrXSdJuV7z7y946XnjxyDSbWQQ6bZpKf36XGGdcSjQ2+o5c5+B06YC0+8hZXo7tTl9Tz/x2BOyvmn7Zlk3MytP6aTvXrsl66EzD4hj55kq1u+hUdMD12Cgz0Wx5I9DYVr3by/pvdnS96JUoLfTbnv3Ln0uQiedvVbT9wkzs3xeJ7Tncuf3bIuNs7Kqx4Mo1m260XTuY03n3tPU9zczsy89dL+sX/OK18j63ouulvUDB/X6QaGox4m2M050uh1d76zIuplZvaafYRbmT8i61+9zBd2XDj6ux8f5+T+R9R27d8j6+Lg+F2ZmceTMuzL6mfGxg4/L+n33PCDr7bY+r+mMHnNOnzoi60HgfwZ1vKrvF+223sfqqt7OqF7ufBo+CQsAAAAAAAAAQ8QiLAAAAAAAAAAMEYuwAAAAAAAAADBELMICAAAAAAAAwBCxCAsAAAAAAAAAQ+RHpj5Dylmv3TytE2tzKZ2S11hb1K9fJ6lsdWlF1meDo7KedZIwy5u3yPrOa/SxTo/ptPKlE/OyfvrYgqybmZUzOq1u1Emxi4o6SS5V0CnjZSfdfK2n39tCUyfcNrs6TdPMzNpOGuVA76OQ0u8t46Rg9rM6MfzUmk7UnFvUkXTdyE+4b9//mKzv2KVTAHdu12ny2BhzA93Oux2dvtns6PTNOK9TXb2kYbN1EmL1pqzjJAGnnbTt0akZWd+2c4+sT45NyHpgzgGZWcHpe6dOnZT12HlzubxOrB045y9I63ErTOs+XxmtyrqZWT/S42+/pcehppNCfOSQTuXc66Rp1hv6+p84dkzWux39ejOzXqzPa7Ovkz8t66fMY2M8fP+XZD0V6jEqdO7RPWecaDd06q6ZWb+l20kmrdNbcxm973zG6X9T+r43Uq7K+tLiaWf7ThK7mcVOunXDdH/NlvR7KEb6PQQZPfZnsnosyjjzj0pVz3HNzDJ5nRK8Vtfz3I5zDymU9L4nt+o5aO2InvvETluqO2OgmVl1XN9HRseret+NprstvPScW4k7lxlEeuxot/UzQTbvz6cHgW7Pg1j3+zh2xsCuHuuCSG/nwIOP6vq9OlH7xjfeLOtmZpWtun8PBrov9Z10bm/W1Wrp99ZoOEnvgT7fvZ4ez8z8a93p6GPt9/VzXsrZ9/y8nnPFkd5Ov++P+56Uc3+s1/V58s4rNs5a3RkPnMeqONLX/OqrXy3r6z0XZJz2E6b0/X7grFs0m7pdVSr6Xtzr6vfccepR5KyjmFngjI+x6RMYxbred+YBq40VWZ/etEnW3/2eb5T1nbv0WpqZWdTT7+H0KT2GePPlo0cPy/qx4/tlPTPQy5mZtH5WHR/fKutmZqXymKzXa3o8XVvz1s2ee4mVT8ICAAAAAAAAwBCxCAsAAAAAAAAAQ8QiLAAAAAAAAAAMEYuwAAAAAAAAADBELMICAAAAAAAAwBA9d3TX/+OktjmJdJ3YSdQMdIbkRLXq7rlY0WnixxfmZP2O24/K+rU3XSfr/VAnht/7sE7gLAf6tPWdlDczs7FpnaxXTDuJfqv6PMXOeU05qXprPZ0AODpSlPXIuZ5mfmpgs6FTVUslfd3CUCc4ewmpnYZOpNs0WZX1rTN+ct+mLZtl/dFHH5H1zeM6JQ8bY83pL+Ylkrd1+++XddJsHOgkTTOzZkOnXZaddOktuy+S9cqkTuO98JJLZf3iiy6X9W0zOtHSO0VmZrmiTorMOYnhceSM4844VCqMyHrKOa8D576yeaufXDm1aUbW9z34oKw3Ozpd9/TsSVk/8IjeTsMZ/+bnTsh610kgNjNreH//zOix0bL8vfTlpt/SKfGdrh5zek7dS7bO5/yxqFDU7cFrPikn6bvnvIdaU9e7Hb2dohP4uzq/on9gZstZ/Uv5qYKul/T5yDmh4S3T84aBl0DsjGlh6F+HdNaZQod6/tZ2jqnb02NLLqePqVDWc9ZoVbelXk/fu8zM6vWarGeLeo5YGtHzOry8RE5y/cAZC7re/Lur24eZ2SCl2/kg1vfobEa3qdh0O+82dX9JO/OSQpCV9XCgj9PMrNvW+2jU1mS91/T6kj6mmtO/Ws4Y23Cep3pO4rmZ2aCvB8Eo0u+75cxlcjl9fdbW9LloNvR7Kxb1+FRd5znfuw8WnXEol9NzWWycbndR1gNnqalcrsj6jTfdLOtbt+5x9/3kEwdlvdlccH5D94FeV/ezQkEf66ZNu2S909H9e7a+6hyPPw4Gga6nnfleOqvHwYqz7pPL6zmR17/n5/R1NjPrOONpu637tzd2dbt6HGy39DG1287a4sQ2WS+P6DU5M7N0Ro8tvb7eR6+n39u54MkOAAAAAAAAAIaIRVgAAAAAAAAAGCIWYQEAAAAAAABgiFiEBQAAAAAAAIAhYhEWAAAAAAAAAIbIiXZ9tr6TYBZndAri7LJOMMs5y767R/0U+pST8DiS0ym6y/1lWT+8/7Csj22alvXjDf2e+05geD7tp+imYp1UmhroeLuxtH5vSwOdGFdxUs/HMzrRb+Cki7bbOjHQzKztpDUH43oflYq3b31eGy393uJYX/9MSp+7kZJOBjQzKznR8SUnTTBa53xgA+SdIStw2kizLuuVvG7LNSdt0sysu6bHlaUlJyky1u28Vdft/MC+fbJ++ugxWS8X9BiRWWccyhR0O085qZyRM+57r19dmNPbcZJ9sxl9PQ8eOCDrZmah0+/n5mdlvdPTaZ21mk4pvfu2W/V2ujoVueMkzKdD/2+cbSeJPXaS29POe8bGWVpwUndjnZSac+4xRaeeyzoTDTNLBbo/9Vt6vOus6XprTc/TmjX9+kxGt8PxcT1/i/I6jdfMbKGxIuvtVT3m5ANdzznJtH03sFZvpxnpfnyyfdLbkBXGnfMdO0nzbX3dgp4z19Rlywyc+XjHSVAP/PGjVdfvwQuUL5VL7rawAZz5ceS0kb5zL+52u7re0/c9M7OuM9a1Ovp3is4DYBjr9tl3nhU279wq65Mj+pljYtukrJuZLS3pcbxe0/O9uKuf5VpuKrg+F20nhX1+YV7WR0ZGZN3MrNfXxzQYOInkTtvoONet5Tyb9fv6PThv2T0XZv7zYi6v1xi6HX2+sXHaHW9+oOc46Yweu9ZWl2S929X3aDOzONDPEj2nD2Syet/9gW5XqZTefjqt116yWd1uczl/fSJyxvIwdM5fqJ/1Rp31tE3Tm2W9UCjL+uf+/m5Zz2b0s6eZWaUyKutT05tkvec8n83PntY7SOl5sfdcmMk4z8OB/3zW9+6dTlvqdJ2J2jngk7AAAAAAAAAAMEQswgIAAAAAAADAELEICwAAAAAAAABDxCIsAAAAAAAAAAwRi7AAAAAAAAAAMERO1Piz5Z0k7q6Turpc0yl21YJOKuusk5q4troi6/W6TvYdy+v01qCnk+eeeOQxWR/N6e3snJ6R9aaT9mtmFkc6eTSK9fnIOkl8Y0WdNtx1UsYzgd5+Y1Un4vqZd2bpsk7789LnikW9NS/Js+sktw8inUgXOcmsXrswM3tyn05v3zSm01N3zUy728JLL5XWbSTvpDU2TLeR00efkPVWTiddmpmdPKbHidNzs3rfq7odxqH+25cTRu2mPrp/QVsnCTsI9TiRcpIiAyet00tkTpnu272uTsDcs2OL3q+TdGpmtrCwKOtbN+txed9+fX2ivh6TV5f19mPnCqUCXY+dupmZhTrhMwp1e40D/XpsnDCjr0k2pe+HTjC4pfp67tNZabn77nZ0WnXLGXO6Nf36wEn6Tsf6vRXHqrKeSuk3l3Hme2Zm5ViPtaWcHssHc3rOYk19ntKmE2sjJ5F54PSxhcBPZM5M6BTnfFm/h1xaj83BwEkAb+j31lrT9Vxbv7e8kyhsZhYFug00evp8Z0p6XoyN4d3Hui09rvScRPtYl9dNoe8PdNvp6EOyvr69uUnVkenxIzM9IuvFSd026y09/pmZ1VaXZb3lPEcEztjYc8bSdlufv+W1Vb3ftu7bE5P6GcXMrN/T+zbTx5pO6/lV7DxTmTOPHjgp4kFKj+2p0J+berOlgdPGWuusGWBjlEdHZX0Q6+s+v6T7ZbOxprcT+ffi6pgeK9bWdNs99OQJWW87410qrdu6Nz5mM7oPFAv+/XMQ6X2EoX7uTTnrRN2eHsxn5+dlvVTUA3arpXvlSLkq62ZmYaDXqIp5fUz5nH59p6vPhfdImnHWBjxtZw5tZjYyou8vaWetyxujzgWfhAUAAAAAAACAIWIRFgAAAAAAAACGiEVYAAAAAAAAABgiFmEBAAAAAAAAYIhYhAUAAAAAAACAIWIRFgAAAAAAAACGKH2uL5ybPS3ruVJF1qcqBVmfmZyQ9W674+47E4SyPlYc0b8Q6rXlXEW/3nm55VL69OSDWP/COkvacRDJett6sp52NlYo5GQ9GOjttOtrst5rtmS9MlKSdTOzfEEfU5DS9XxaX7cgm5H1Vke/hyjQx9OL+no7+uVmZjYxOirrk2Njsl7OZtfZGl5qmWJZ1rNp3S8ipw93Onq8Ob1Wc/fd6Onfyeb0vqc2b9bbaekW2o8Gsp5O6X7kc8YnMzNnH1496us+5tX7cVe/3tn+I488KOsXX3S5rJuZbd40I+tHjz4u6+12U9YD5zwFzjgemDMQeeXQ+YGZBRm9k2wxr1+f5u+lLzfFUI8tcU/3gXZTt8NWTd+ju626u++4r/dhAz3PsL7ufylnqIi8KY7zg9TA6UvmHI+ZlZx7a9DW762/qsfNdF/vuz9wxrSUrmeceYmZM2aaWdTV94so78xlQr2PINLnKe7ocxHXnfFX79Z6Kf16M7M40O243W3ret+/pnjpra3p8WN5eVnWY6c9Z7K6HQycfmRmtrqqx6jmqO6r3bJuh2HgjE/O3Gfg3A9bzryu5czdzMw6Th/rOM+kmVCPWy3n9Y2GPhdLSyt6+5nzf+ZoNPS9JZPR400+78wzAj1niWM9xubyeu5bLBbPaztmZrWaHku93+l2ncEOG6bf131gta6vlXcr6Q50u+33dXtLOGspzjztiScO6X07B5UNdL/sOfdJb0EoX9DPsGZm7Y7eVtqZN3jjY+A8xHhjebejx6iGrJrFztqLmVlszrpMa0XWy2W9hlgdHZf107NHZX3gHJMztbJO23/WzxV2ynomq9fHmi1nPn4OeLIDAAAAAAAAgCFiERYAAAAAAAAAhohFWAAAAAAAAAAYIhZhAQAAAAAAAGCIWIQFAAAAAAAAgCHSsXFCsViQ9UpZJ8aNOK/P5nQq49Kyny6WTevDDJ0UySh2kmYHOrlvsqoTzwppvf1Mz0kLXWdJuz7Q72/BSdTst/U+RvLOe3bSkkMnRbRQ0dcnXifRO+WkDAYpJ1HTSdrMO21g4ATuDZzt9J1E5mLJTx+MYp0mmHGS0rtOojU2RiflJJI7EfVd5/X58VFZ31zUSY1mZkFO971yZUQfk5NIfviQTuVstXVCZb6g+2oY6rYcBn56ddDT+xj0dLKo9x76TjLtINLpnr2uHp8azvj36GMHZN3MLOVc07XVeVmPnSEt41zPONK/4CUHO03PvT5mZmknid27P0brpApjY9Rm52S95aQ89xo6STzq6j6Q9W/FVkzrtpVy5kpd02NCFOh25aXoxk4/jlp6XAlS/liUc97D2qpOew/7+ljTzjwgdFKO004KfOAMFEHP73uDhpPqntbXtNvX58kbKTJe+vFAH+ugrydRnXXakjdv7UdeKrmXmYyNMLeo73urKyuyni/oe89IRs+b83l9TzIza57U+549dVrWJyubZD2XdcYJp+tlnGc/c9r//PyCfr2ZnTh8RO+6p8e6XE7PxwLnft9sO3MiZ241MTYm6x1nzmVmFjsR4JmMvtZhqDt925mPFZw5qLd97/6xtroq62ZmaWdbBaf9lUr6mLBx1mq6z3htNwh0O4yd+W42r9dqzMzCdFFvK6XnaUsreuzK5vR2Urp5Wn/g9W99r8+t8x5SqZxT1ztPO2sy58t77kg74+wgctbAzKzV1PO3yFl/a3f0mJDP63OR98ZfZx4TOvPMUsm/Drv3XCLrGWff3XXmiM+FT8ICAAAAAAAAwBCxCAsAAAAAAAAAQ8QiLAAAAAAAAAAMEYuwAAAAAAAAADBELMICAAAAAAAAwBCdc7RazklHLDtJ9OmsXt9da+lk1eNrK+6+11Z02vBkSaeSV0Z16lnY0cc0u7Yo68WiTmfLOUFoqchPw+6FOmWu66SVrzgJy3FfX4dizkmSc65bz0kODpy0ZDOzrJcm7iQZpp2kZi9l3E3sdFJKy857Lq+T5tp1Uv1CL6Wxr/eNjdF3rnlsTnrk2JSsb9q2U9aL01vdffecP1k1Wk1ZX1nQ40q2NCrr5fFpWc94/S6l+1HG6UdmZulIpwd76brxQNd7TuJvt63H97ZTd3Zr2ew6ybfOMQ1incDa6eqxNOWcJi+J1BnmLHLGlMw6yaX5rL6mYaDvIVHMOPRyc8pJ1Q6chO6c019Dp/3knLRoM7O4o/fR7eg+EKX1vgfOMfVjp48598PAeQ+9rt9u087cJDXQHbPvvOfYSeIOvA4b6+1YX78+9LZjZlGkjzWIdN+PnfE3ivQ+vDHenHBi51RYx9mvmVkQ6n3Ezmc0YudYsTHmnXnG8rLzXFPS8+Om82wWZvy2027qecDJ+glZ3zq1XdYrFT2v67adRO22nnMtzc/K+uFDeqw2Mzt17Jist+p1WS+VnefO6pisd5znl6Kznch0f2ytN5Y6v+M9a3V73jjkPRfq7aysrMh637sHrvNsNlLUqfRZ5z7Y6+l7HTZOP9bz13xBz3dLJWcOkNI3sn7Xv+b1urNONKmfAYNAt6tWa03X27oeOGsH5ZGKrK/zeGZx7DzHpvV5imNn/hbp85Rx+lJ1VD+TFvK6T/YHzrzEzELnuSflrC15c59MQY9Fuy64XNZ7XX2vyOX1GuWVV10t62Zmu3fq9YHQ9D7SaedB9hzwSVgAAAAAAAAAGCIWYQEAAAAAAABgiFiEBQAAAAAAAIAhYhEWAAAAAAAAAIaIRVgAAAAAAAAAGKIg9qLtAQAAAAAAAAAvGJ+EBQAAAAAAAIAhYhEWAAAAAAAAAIaIRVgAAAAAAAAAGCIWYQEAAAAAAABgiFiEBQAAAAAAAIAhYhEWAAAAAAAAAIaIRVgAAAAAAAAAGCIWYQEAAAAAAABgiFiEBQAAAAAAAIAhYhEWAAAAAAAAAIaIRVgAAAAAAAAAGCIWYQEAAAAAAABgiFiEBQAAAAAAAIAhYhEWAAAAAAAAAIaIRdiXgcOHzYLA7P77X/i23vtes3e+84VvBwAAAAAAAMCLg0XYdQTB+v+9973nvq3jx82yWbNLLnn2z7ZvNzt1yuyKK160QweALxu7dpn9xm9s9FEAGJYXYz71/veffX06bTY5afa61yVjR6cz5DcAAADwVYJns+FiEXYdp06d/e83fsOsUnl67b/8l3Pf1h/8gdm7323WbJrddtvTfxaGZjMzyUOFEsdm/f7zfRcAvlq80IWOXbvW//03vOEleBMAvuK8WPOpyy9PXn/0qNlnPmP2Td9k9p/+k9mrX21Wqw31LQD4MvFi/dHn6qufXX8x//UigK98PJtBYRF2HTMzZ/8bHU0a+jNr5yKOzT74QbN/+k/NvuVbzD7wgaf//Jk39M9+Nvnfn/yk2XXXmeVyZrfeenZC8Lu/m3x6tlhMHkBWVvx9f+ITZq95jVm1ajYxYfZ1X2f2xBPP3vdHPmL2xjcm23zFK8zuuOPp27n99uQTJ4VCsu8f+iGzRuPc3j+Al8YLXei4++6zr/3zP09qjz12tvaRjzz99b3eUN4GgK8wL9Z8Kp1OXr9li9mVV5r94A+afe5zZg8/bPZLv3T2dcvLZt/+7WZjY8m85mu/1uzgwadv63/8j7NzqX/8j81+7deSuRKAL28v5odohqHb3dj9A3jp8GwGhUXYF+DMYunhw+u/7jOfST4Be8styULsn/zJuX1i4yd+IvmEx759ZlddldQefzz5/Y99LFlgvf9+s+//fn8bjYbZj/xI0oH//u/NUqnkYSOKnv66f//vzX7sx5LtXXSR2Xvec/bTtw89ZPbWt5p94zeaPfig2R//sdkXvmD2Az/w3O8BwEvnhS50TE2dfe34eFKbnj5bm5gw+53fMfuGbzArlcx+7ueST/k/c+Hiox9N9v1Uf/VXyR+V8vnknxF/4zf6x/HBDybH+ulPn+cJAPBl6VznU8ollySLrE99EHnve83uuScZd+64I/lj+Nvffvbh5LbbzP75Pzf74R9O5j1vfrPZz//8C38fADbei/VHn3P1uc+Z3XBD8qGZzZvN/s2/efq/YHzDG5Jnph/5kWT+8+Y3J/X3v99sx47k97ZsST7gcka3mzwHbt2azLduvDEZJwF8eeHZDAqLsC9AsWh28cVmmcz6r/vAB8y++ZuTrx24/HKzvXuThczn8rM/m9yoL7gg6WBmZu222R/+YfKJ2Ne9zuy3fsvswx82O31ab+Nd70o61IUXJr/zgQ8ki6qPPvr01/3Yj5m94x3JAuzP/IzZkSPJgq+Z2S//cvIJ3n/5L5PtvPrVZr/5m2b/638lxwPgy8MLWeg446d/OrnRP/SQ2Xd917n9zt/8TTIOveMdZl/6UvIHoeuu06/9lV9JxqNPfvLsgwqAr2znOp/yXHLJ2XHt4MHkweJ//k+z1742+dc9f/RHZidOJA8hZsnc6Wu/NhlrLrrI7Pu+L/nfAL7yvRhzoTNOnEj+wHP99WYPPGD23/978qz1cz/39Nf94R8mn+S/7bbkXzT+2Z+Z/fqvJ///wYPJ2HTllWdf/53fmbz2wx9OPgDzTd9k9ra3PfsT/QC+vPFs9tXJ+RZSnIsbbjDbv3/916ysJJ/O+MIXzta+7dvMfv/3zb77u9f/XdURduww27bt7P9+1auST7U+9ljy15BneuIJs5/6KbM77zRbWDj7CdijR58eBHbmk7ZmyV9xzczm5pIHm3vvTRZk/+iPzr4mjpNtHTpkduml678PAC8PL3Shwyz5g8y53uDP+PmfT/4Q9TM/c7b2ilc8+3X/9t8mDyqf/ezTH0YAfGU7l/nUeuL47Cc89u1LFjtuvPHszycmkrFv377kfz/2WPKvgp55DH/918//GAB8eTjXudBDD5mVy0+vxfHT//dv/3bytSb/9b8mY9All5idPGn2r/+12X/4D8m/QDRLPoDzn//z2d/7+MeT57ZbbkmOY8eOZAwyS57d/u//TUKdt2xJaj/2Y8m/gPzgB81+4Ree/3sH8PLCs9lXJxZhh+xDH0o+LfrUh4EzC5iPPmp22WX+75ZKz739Mw8dz/x4+Rn/6B8lk4P/8T+SG3kUJYuvz/w+oqd2/DPbOrNgG0Vm3/u9T/9nMmfs2PHcxwjg5eGFLnSY+X8lXc/995u9733rv+ZXfzX5+pR77jHbs+d5HRqAr1L79pnt3p38/89cJDnjqQu1T/3/n/pzAF/5znUudPHFyafqn+rEiacH4ezbl3wg5qnjyc03m9XrySLqmeekZ86dvumbku+H3LMn+YTr29+ePLOl02b33ZeMRxdd9PTf6XTO/stIAF8ZeDb76sTXEQzZBz5g9qM/mjT0M/898EASgvX7v3/+2zt6NPkL6xl33JH8lfWZN2ozs8XFZHLwkz9p9qY3JZ9YXV4+/32+8pVmjzyS/BX3mf9ls+e/PQBfvp75x6FU6tmLF8/8UvhC4bm3+9rXmg0GyXdeA8C52r8/+YTYu96V/O/LLku+j/Guu86+ZnHR7MCBs/9y55JLzL74xadv5557XprjBfDlIZt99nPPzp1Pf816f9B5av2Zc6ft25NP5P+3/5bMkb7v+5Kvmev1kg+/hGHyLxGf+vy4b9/Gh4oBePnh2ezLD4uwL8AXv5hM5E+c0D+///7kr5nf/d3Jp0+f+t973pN8p+r5Jtjl82bf8R3JQu6ttyafTn33u/VXEYyNJX8x/b3fS75O4B/+IflS+PP1r/91stj7/d+fvKcz37f2gz94/tsC8JVlaioJGmw0ztbuv//pr7nqquS7htZzww3JQsov/ELyPdQAvno813zqjH4/+Q78kyeTfyr8W79l9vrXJ995/+M/nrzmwguT70Z73/uSr4J64IHka6C2bk3qZsn85eMfN/u1X0vmNL/7u2Z/+7f+vyoCAOWyy8xuv/3pCx633242MpKMOespFMy+/uuTnI3PfjZ51nroIbNrrkkWPubmnr0IrJ73AOCpeDZ7+WMR9gVoNpO/YnoLqR/4QHJzvuSSZ//sne80W1oy+9jHzm+fe/cmX6L89rebveUtyYLub/+2fm0qlXyh+733Jq/7V//q+XWgq65Kkj8PHkz+InLNNcn3zJ757lgAXx7OdaHjfNx4Y/J9Rv/u3yV/7PnQh5JUzqf66Z9Ovt/sp386+STHQw89/bvRznjVq5KFkJ/92SSwAsBXh+eaT53xyCPJ3GPHjuSfBP/JnyTfV3brrU//7sYPftDs2mvNvu7rknEljpNF1zNfvXTzzUma8K/9WvIdaJ/4RDJHyueH9hYBvEy8mHOh7/s+s2PHkj/s7N9v9pd/mcx1fuRHzn4frPIHf5A8Jz78sNmTT5r97/+dLMru3Jn868Zv/Vazb//2JFfk0CGzu+82+6VfSsYxAF85eDb76sR3wp6j9743+e+p3vCG9b9D7Ld+y//Z1FTyiY4znrqd59ruv/gXyX/KMzvYLbck3z37VE/d9q5dz95Xtfrs2vXXm33qU/4xAXj5O9eFjvMxPm72f/5P8im03/u9ZMx5//vNvud7zr7mDW8w+9M/NfuP/9HsF3/RrFJJ/tmdcvPNSWLn29+e/HM89V3UAL58PZ/5lFkyrrz//ee2j7Gx5F8bred973v696G9733JH7oBfGV7MedCW7cmC6M//uPJH3TGx83+2T9LvgpuPdVqMh/6kR9JPvV65ZXJB3POfOfrBz9o9nM/l3yl3YkTSf1Vr0rmRgC+cvBs9tUpiGOiCL5cvP/9Zh/96LM/Tg4AAIBz9yu/YvbmNyffpfa3f5ssdvz2bydfIQUAAAAMA5+EBQAAwFeVL34x+ad3tVqS+vubv8kCLAAAAIaLT8ICAAAAAAAAwBARzAUAAAAAAAAAQ8QiLAAAAAAAAAAMEYuwLxNveIPZv/yXL3w7n/2sWRCYray88G0BwEvh/e83u/rqjT4KAAAAAPjqxrPZcLEIu473vjdZ0AwCs0wmCW74sR8zazSe3/be8hazMDS7885n/+wjHzH7j//xBR0ugK9yL3TMev/7z/6+99/hw0N8AwC+Ir0Y86nDh58+Fo2MmF1+udn3f7/ZwYPDOnIAX25ezPHm/vuf/bMX64MzAL7y8WwGhUXY5/C2t5mdOmX25JNmP/dzZr/920nHOV9Hj5rdcYfZD/yA2Qc+8Oyfj48nDxSebvf89wngq88LGbN+7MeS3z3z37ZtZj/7s0+vbd9+9vWMSwDO1Ys1n/q7v0u288ADZr/wC2b79pm94hVmf//3L/4xA/jy9GKNN8MwGJhF0UYfBYCXCs9meCYWYZ9DLmc2M5M07m/5FrNv/Vazj370/LfzwQ+afd3Xmf2Lf2H2x3/87L9+PPOvqrt2JZ30ve81Gx01e9/7zv5V9sMfNnv1q83y+eRTIJ/9rL/fxUWz97wn6bDFotmVV5r93//77H3/0A+Z/cRPJIvBMzPJX12eanXV7Hu+x2x62qxSMfuar0kegAC8vLyQMatcTn73zH9hmPxx6Mz//jf/xuxd7zL7T//JbMsWs4suSn4vCJ69j2rV7A/+4Oz/Pn7c7Ju/ORljSiWz664zu+sufRyHDpnt3ZuMlzyoAF8ZXqz51MREsp09e8y+4RuSRdkbbzT7Z/8sWdw447//d7MLLjDLZs0uvtjsf//vp29n/36z17wmmUtddlmyHTWWAfjy82KNN+diedns27/dbGwsedb62q99+qfz/+APkjnRX/91MtbkcmZHjiTPbzfckMyJqlWzm29O6md87GNm116bjFF79pj9zM+Y9fvDeQ8AhodnMzwTi7DnqVAw6/XO/u9du569YPlMcZwswn7bt5ldcknSOf7kT557X7/8y2ZXXGF2771mP/VTZ+s//uNmP/qjZl/6UrIY+/Vfnyy2Ku12cgP/6782e/jhZCH1n/7TZ3ewP/zDpPPddZfZf/7PyV9YPv3ps8f/jneYnT5t9vGPJ8fzyleavelNZktLz/0+AGyc5zNmrefv/z755NmnP52MK+eiXjd7/evNTp40+6u/Sv6A8xM/oW/iDz+cPIh80zcliygp7lLAV6QXa2xKpcx++IeTxYt7701qf/EXSe1HfzQZU773e82+8zvNPvOZ5OdRZPbOdyYLJnfdZfZ7v2f27//9C3xDAF62Xuy50FO9971m99yTzG/uuCN5bnr725++v2YzWST5n//T7JFHkkWPd74zmRs9+GDye9/zPcnCiZnZJz+ZPDf+0A+ZPfqo2e/+brJ48vM//+IcM4CNw7MZ0ht9AF9OvvhFsw99KFl8POOCC8wmJ9f/vb/7u+Tm+9a3Jv/7274t+UqC7/zO9X/va77m6R9VP/N9Hz/wA8lfPMySjvCJTyTb+4mfePY2tm59+jZ+8AeT1//pnyafHDnjqqvMfvqnk///wgvN/ut/TTr0m9+cPLQ89JDZ3Fzylxwzs1/5leSvK3/2Z8mkAcDLz/Mds9ZTKiUPEdnsuf/Ohz5kNj9vdvfdyYOHWfLX1Ge6447kXwz823/78vlngwBefC/22HTJJcn/PXw4+WTZr/xKsjDyfd+X1H/kR5Lv4/+VXzF74xvNPvUpsyeeSD6JNjOTvObnfz6Z8wD4yvJCxptXv/rZCw6t1tnAmoMHkwWM225LXmtm9kd/lHzi7aMfTRYtzJIFl9/+7eSrU8ySD7GsriZzngsuSGqXXnp2Hz//88kn3L7jO5L/vWdPkh3yEz9x9nkNwJcfns1gxiLsc/rrv04+Bt7vJzfQb/gGs9/6rbM/P5fvIPvAB8z+yT8xS///z/Z73pN8mvWxx5J/Iue57jpdf9Wrzv7/6XTyun379GsHA7Nf/MXkKxBOnDDrdJL/SqWnv+6qq57+vzdvThZdzZJPltTryT8BfKpWK3mIAfDy8WKMWeu58srzu8mbJcEW11xz9iavHD1qdsstydew/Kt/9YIOEcDL0DDHpjhO/u+ZT5Ht2/fsPxDffLPZf/kvyf//2GPJIsmZBVizZPEWwFeGF2u8+eM/fvriqFnyT4nP2LcveRZ76gdbJiaS57unPptls09/1hofT/5Q9Na3Jn/8ueUWs3e/O3n+Mkueve6+++mffB0Mkn/h2Gwmn+IH8OWBZzM8E4uwz+GNb0w+bZrJJN+zkcmc3+8vLSV/Ce31ku2cMRiY/f7vm/3SL/m/+8yF0vWcefB4pl/9VbNf/3Wz3/iNpIOWSsl3zz7zS5uf+b6C4OzH0aMomRSo756tVs/9GAEM3wsds56LGpeC4OwiyBlP/Wc2hcJzb3dqKjneD384+W7HSuWFHSeAl5dhjk1nFjt27z5be+a8KI7P1p76/wP4yvNijTfbtz/702FPndM8c+7z1PpTx5hC4dljzgc/mHzdwCc+kSz2/uRPJv+c+Kabkmevn/kZs2/8xmdvO59/fu8FwMbg2QzPxDc6PIdSKbn57tz5/DrMH/1REor1wAPJXxzO/Pcbv5F8D+vz+YL1O+88+//3+8lfS8/8U7xnuvXW5K8t3/ZtyT+B2bPn6V8Wfy5e+crk+2DT6eRcPPW/F/LReQAvvhc6Zj0fU1NJOucZBw8mn9Q446qrknFvve+QLhSSvxTn88knQ2q1oR0ugA0wrLEpisx+8zeTBdhrrklql15q9oUvPP11t99+9hNtl1ySfMJjdvbsz++++8U7JgAb66WaC112WfIs9tSsjcVFswMHnv0JWuWaa5J/5nv77UkOyIc+lNRf+crkE/vPfO7au5fvYwS+3PBshmdiGH+B3vSm5PtTPR/4gNn/9/8lN9an/vdd32W2smL2N39z/vv8b/8tCZ3Yv9/s+78/SeX8ru/Sr927N/mr6u23J58U+d7vTRZUz8cttyRfgfDOdyZfFH/4cLK9n/zJ5IvoAXz5eK4x6/n4mq9JtnnffcmY8M//+dMnGe95T/LPft/5zuR705580uzP/zz5nqGnKpWSMTGdTtKF6/UX9zgBvHyd69i0uJjMY558MvkuxltuSb5j7QMfSFKDzZKvfPqDPzD7nd9JHjx+7dfMPvKRs99n9uY3J9/B9h3fkYTi3Hbb2WAuPiELfOV7seZCF16YfNjlfe9L/vDzwAPJB1+2bk3qnkOHksXXO+5IQgU/9amnL9z+h/9g9r/+VxLW88gjyTPcmU/LAvjKwrPZVx8WYV+gJ54wW1jQP7v33uRmfCZE66lGRsze8pbkoeF8/eIvJl9j8IpXJJ90/cu/9D+R+lM/lfw19a1vNXvDG852tvMRBGYf/7jZ616XLPZedJHZN39zshi7adP5Hz+AjbPemPV8/eqvJv9k73WvM/uWb0kWOp76fWXZbPKAMT2dJAZfeWUyjp1ZMHmqctnsb//2bLpwo/HiHiuAl6dzHZtuuSX5iqQrr0yCay69NFlIfeMbz77mne9Mvv/1l3/Z7PLLk2TxD34wmQeZJWPPRz+aPExcf73Zd3/32cUN/qkv8JXvxZwLffCDZtdem4TXvOpVyfzl4x9f/xNvxWLyYZp3vSt5rvqe70mCl7/3e5Ofv/WtySfQPv3pZIy66abkj0k7d744xwzg5YNns68+QRx732aDl5vDh5N/bvelL51N5QQAAMALc9ttZq95jdnjj59NKwcAAABeTARzAQAA4KvKX/xF8umOCy9MFl5/+IfNbr6ZBVgAAAAMD4uwAAAA+KpSq5n9xE+YHTuWfKXTLbck/3wPAAAAGBa+jgAAAAAAAAAAhohgLgAAAAAAAAAYIhZhAQAAAAAAAGCIWIQFAAAAAAAAgCE652Cub/2p3z6vDQdBcF6vT63z+iB1fmvF3r4zzi7COHK2o1+fco4nCPzjTIXeV+/quv9Nvc7rnVdHzjHlnV/ImH8dus4JGQQ9WU9bX9bjyHkPkbdv/R4GznuIU/576A8GelsD3Qa80/E//sMPuvvAMOk2NYj0dfW+8tptautIOe0t8Nqhs+/4PPftjTfe9tcbewOvQT+P8yF558IdobTzvX88H+4ROePTvgcekvXFlSVZv+k1N7v7zmaz+pjO85oGlnH3geH6tjfulPVWV78+M7pd1lOVGVnPZvSYZmYWRi1Zj737W5iT9Sgs6H077W15aVHW777vAVmvNfRxmpmFad0HgvPMix0479kd+805R848xiJ/XhfG+mepQN+nSkX93sIg1MfU18c6MjIi62tra7Le6TjvzczSptuG9xGNvnOvXVxruPvA8Oy9cJesb9umx5XTsydlfXlV38d2bdPjlpnZqePzzk9038tm9f3Ku7+123owbTY7st5o6DZYKOhxbr2fDQbOXNPpq+2u7mP5jH59uaDHvy1TE7I+PlaVdTOz2eOnZH1pUV9TM31MYaiPqee8t06sr0Oc8u5d/lja6+o20+3qbWVCPZYutpruPjBcd/3J18n64kk95ozN6Lbe6+jn8aiu+6SZWT8qynqtocecfvkSWc8Ut8r6K199k6ynsqOy/qW7H5T1N3/dP5Z1M7NMVrfpyHkm8eY+UXx+cyLvudAbl/veeomZ9fvOtRs4Y3mkx5ZKviLrxUJe1l/MdCtvW1Hkv2+lUHzutUs+CQsAAAAAAAAAQ8QiLAAAAAAAAAAMEYuwAAAAAAAAADBELMICAAAAAAAAwBCxCAsAAAAAAAAAQ3TOMbQpJ4kwcFIwX8x0ay8d3OXsO5Vy6sGLs/1onXg270fueXIOKXB+EDgR7Tnn+qS9S7/euXD2Ecc6UTOKdCphJtQJh9mMTskrO4nC1dFxWe87yZ9mZoePn5b1hg75tDh1fknNGC4vmXnQ123qwL7HZH1yekrXN027++71dLrj/Xd+UdbbLZ0MftPrXyfr6Yxuaz3nvaWdvhoFfoKj95OUMw45Xd4iZ1zxUpG99E1PvN7rvTHTTf70tuOUnXTPI/sOyPoTTz4p66+86UZvzxamnXHFew/Oew75M+qGCQN9DQeR7q95fTu0Pbs3yfrkeNndd2N5TtbnTuuU7KaX9O2kWPfbug8ceuKIrK8t12Q9Wmce2O/rm26Y0vv25ml5Jy03n9P1bl+P44Gz317XT2S2gZ6z7Ng+KeujI7rNNFbq+pic3RaLOtG9M6p/Y2lhxdmSWbepz8fmrZtlfc15PTbG3JweCxrNVVnfvFmPN7mcbptbtuq0cDOzUn5E1p94Qt8T63Xdzns93Y/8lGrnfujcENdLtd6yZYusL68sy3qzrcetgTM3bbf1PLDfbct62rmnD5wx3MwszOqbyybnvTmh6ra2qq9Pu6uvz8C5PgPn+piT8m5m1nXmubFzD4md53lsnJIOtLduW68ReMsNtTXd3kKn3ZqZhWl9XxrJN2W9Vb9P1pdP3i7rd63eI+uD4l5Zzxa3y/rBIydl3cx/rsqkdf9ud/QYcvjkvKy3uvoERpH3IKH7WL2jr4+ZWbOj95Ea6PG03dDX5+arL5P1G665UtYH3mD0PNYiY+fG49V9ut0/FY9wAAAAAAAAADBELMICAAAAAAAAwBCxCAsAAAAAAAAAQ8QiLAAAAAAAAAAMEYuwAAAAAAAAADBE5xz97gaMuWFhXrqYs/119h3HXrKlk+jtvDpyk6fX2bk+IL39dRI4z3cfqZReHw+cRMiUt+9YJ072vbO0TuJklHISTJ0kzCjSzSsV6vNXyurt7No8KutTUzrl9fAxnRZrZmZOMrLF+nyfbxYehsu/HrrtLJw6Leu5ULfN6Zlpdw/Hjh6S9cfuu1fWQ2cfq1dcIevlMd3Ow6JO+V6bW5L1bNFPZEw724qc8+d0VXeQDZyBruskBHtpuZliydmxnyAaOPWo743Lup7OhLI+Pq6vz9wxfZ3rqzoN1MysWNCpxW76JgPRy0+gE2tzBd3/dmzV96td0zphPO7r5FszszDtJNCO6v5ddxJrW07XOLm0JuudVk3WN2+akPUwm9M7MH8+Vig5cxxnbpLLOWOak1beaur9Li/rlN5SSW/fzKxV1/OJoK/nSvWVhqyvLerzvWObvh8tLeo5TtE51qmqP5620jrtfWq8KOv+LBcb4bLLL5b1xx7bL+uLi868IafvY7W1urvvrNO/r7nmGlmfnNTjxNGjx2T9/vsfkPVOR/e7yJlPeGOBmdnysj4f3r04l9HnKZ/X52JlWT+DmffMltLzj1rTvx/kM/qeUy7rfh86z2yVlN5OoaznPtVJXe/09LEeOnRY1pPf0e0sTOvzkXLq2DjdfkHWU1ndZ7IFPYfatFW3z/qSvn+amTWWdXuIAt3/UqEeE2Y26+0faFVk/fgp3ce2zejt3/239+gdmFnXmednQ/3eYtPzjNWGft7q97x1Due5rau333Wfqcx6ff2+uz29rWpW16++xFmrCZwxPvbGeGctbZ1VR/c5bAj4JCwAAAAAAAAADBGLsAAAAAAAAAAwRCzCAgAAAAAAAMAQsQgLAAAAAAAAAEPEIiwAAAAAAAAADJGOrBNSgV6v9RPJdPKYE57tpmq/mGJnF17a9nnno63zHs4/6Zj0GwAAwl1JREFUa805f96bcNbTI6cee+vv7vU063dWZD10mlEmLMt6yUlh3bZ5StbHq3o7S0s6ffz4yVOybmbWHzjvz2nfw2+VOB9RrFMZva4XOkmzywvzsn5sv99TP/9XH5P11RMnZX1y6xZZv++O22S9OKpT0q9/3Wtk/fbP/IOs771YpyWbmV189ZWy3vP6vZNI3m7olNJsVqfrPnHwcVnvOIm/17/6Zn08ZtZxUjazoR5XTs4el/WFxUVZ33PxBbI+O6/HlfkjT8j6vZ/+pKybmX3N//fNsh447TUM9fjkhKbiJdBzTv70lI7XreZ035jdpxPAB12dcGtm1u/o/hcNdBJwmNP30GJeJ/4Oumuyns3qcSJXzOt6Xqclm5nt3rNH1putFec39Ng/Ozsn66WSPqbxalFvvduR9fW6WNcZN1fmV2R9bEyfj9ERPfannLTyTEZvZ3FBJ4xPT+gUczOzLZsmZb3Z1O3vxOnT7rbw0tuyZUbW2219/VotPXasrek+/8gj+919T0/oOfvMzLSsP/HEiqyvrq7KetEZV2LnOWgw0PO3Ead/mZnVajVZD53xfdu2ref1eov0mFxbc8Zw59lscUVfHzOzLZt0G8gVdXJ75Ez3rrz6Mll/xSuukfVtO7bJ+udu/ays9+PP6x2b2ZIzH6vV9Ptud/R4jY2zMqvbdKut62FOt/VWQ/eZIOfvuzqlt9Vt6eeCdNrZd093jgePZ2R9ruXM0wK9nc88qJ9HzMzitN5HztmWme4DfWflwnl0stB5dho488le339O7g/0PK3Z19u6ZNu4rN955/36mHr6Pd9w/VWyXsjq+d7AWwsys1Tqpft8Kp+EBQAAAAAAAIAhYhEWAAAAAAAAAIaIRVgAAAAAAAAAGCIWYQEAAAAAAABgiFiEBQAAAAAAAIAh0pFoQuCkZAdOSqW7HSfG3KuvJ479hDYlcl4e2flt5/nx1rv1+450wJwFgT5W7+zF3iUOdD0Y+InMy7OHZT0f6r3v2nG5rO/dtVvWp8Z1UnPXSXl98viCrC+3/NS7vvO+vevzEobk4Ry47dzp3P22TlK89e8/I+sjOpzSzMzyPZ083W+syPqTB3Sq6/KxU7Keregk24uvvFjW44ZzPO2mrJuZ9To6HrPjjKXOsG/7Hrhf1itl3Yc7dX1MzZpOTR2sk3wbee8hrdOJ62s6/bi5pOunnjgq64988U5Zn3SSS0/cd4+sm5k9skePgTsuvFTWK5Wq3tA67RXDteyk4mbquk0fWV2R9aC2JOvbZnRqvZlZp6a3tbam6/lSVdb7OScZPOrKemVE3z/DrL5RlspZWTczy6T1mFNfbct6sViW9XxmVNYXZvX8II51f92xXSe9N9b8OVHc1cc0OqJT3bPO6Vhb1ePjyVO6bRTyBVnvD/SA/eQRfS7MzCpFnR7c7Ok20HHOHzbGoUNPyPqpU7Oy3u3qlOrIeegYOK83M6ut6PHjxIljzj50n/fSuTMZfU/vdvX8wHuMjCK/zaadRPKOMweZnnLGZWcfhw49qV/vHGu7o/vd+KQen8zMvCvUaOmx9LrrbpT1G298taxv2bJN1vMFPXZs27FH1v/Zd18i62ZmJ0/q1Pj/8pu/IevNlj/PxcYoFXSfiVK6j0WBHnPqK7rdxs4c38xs4DwX5DN63966RejUjy3OyfqpBf0cNlMal/UjR/V2zMxKZT2fyMW6h3c7ug/0nXW5oDSit+/MJ8xZh4oif70ujvUv9Xr6PfQH+vUPP35Y1h/Z96isHzqmn9u+/uvfJutV51wnx+Sss3lv2zlP54IlJgAAAAAAAAAYIhZhAQAAAAAAAGCIWIQFAAAAAAAAgCFiERYAAAAAAAAAhohFWAAAAAAAAAAYIhZhAQAAAAAAAGCI0uf6wiAIzqs+7O08P7Guxrr+UuzbLXunw3m9+/JUxvlBKMsZi5wtmY2V9Lb6jSVZnxrV+5iZGtWHFOvmeHJ2VteXWrLesZysm5kFgX5/3vlLeSccG+LuBx6R9ZNHT8h67+RxWV9+8qCsV6bH3H1PTJRlPSznZX12rS3rzVpd1iOnrX3mz/5K1lsn5mV9+fScrJuZPXTPg7Led8bAwPqyfvLoE7JezOg+PFKuyHqjrbd/4sABWTczC/oDWc9Uinof9YauLyzLetq5K1YGeryZHh+R9V7fH0sf/tQnZH32+ElZf93b/5GsFwruLjBkx2Z1+1mar8l6vq/b+lRRjx9TE377MdP31n5X941OtCrr7eUFWS+UdcMaz+vOURvoO2i5rO/1ZmanT+nxq1LRv9PtdmU9GujzOj09LevZnD53paKut5p6+2ZmYc6Za+SystyNO7Kezuh9z87puVWnpLcTpfR1iJ1x2cxsdlXfp7IZ/RmN1EsyV8e5Wl7W49Dmzbr9nz616GxHjxHrXe+087Mw1O3Nu7emUrr9Z7P6maNW0/fiwUCPmc2mfn2yD91XU85HlFaXdZ/csW2rrIfOOWp0dL+LnHORaurXm5nt3rlD1t/2trfJ+sTEJlkvOWPv/oOPy/off/iPZX2bcy7+3b/7N7JuZlZvrMj6XV+8Q9Zvv+12d1vYGOmCnn+YM/cx032vOq77fa+n73tmZvWu/p2Ws++lJT3vypT0s8p4qF8/sX1G1vN5PYBUR/R7NjMrFPQAmXLWNNJZXY+c8dfS+hx1+npu1WrqerzO5ze9MTt2niUHA31Nw6LzcBPofX/i7+6U9SOn9PrRP37HW/T2zeziC/fqY3JWivrrrJs9Fz4JCwAAAAAAAABDxCIsAAAAAAAAAAwRi7AAAAAAAAAAMEQswgIAAAAAAADAELEICwAAAAAAAABD5EemniM3N/NlmKAax94xDf9Yg8BJT3PSbAPvWJ26l1Y30KHnljInkc56+hfMbHp6i6yvzTmpxb01WY9NJyieWtQp5gdP6DTSVqyTAVPeuTazfEr/LHCS6bvPP/QOQ/C3n9GJqAuzOmn7oqxuz5dMlmR9xEnONjPrd3S6Yymj2+FYTrfzYy3d99p93YdXH3hI1mOnbebrZf0DMys29L4Hke7D1tepwmUnuTIb6e3HLZ3gXK/pc7pW12OBmVmnpn82tn2zrE9umpL1w0/oxN+8cy52zozL+qpzTnOhTgk1MwtX5mT9aPywrHe/5s16QzrIFS+BdKYo6+2aThnvOOnWmZ4eo1ZW9XbMzDKhvl/1I2dQcFKFQ2cQyTiJwu1YJ/vOrtRk/UjnmD4eMytVRmQ95cSSt1p6LMrldT8LnDmod6+v15uyvrziX4cwrc9Hs62vdRzp9zBV0R05CPTYlc7p/Xa6+p6zuKLnYmZmA2cuWB3R57XR8FPa8dLr9/X4sbSo581eerXXX5zukuzbGW8yGb2PitPnd+/eLettpx81m/tkvdPR9+7BwEltX2cf2azuY/Pzeq5Zreg55eio7ttLa3V9QF099m6aqerXm9mbbtHzgyuuvErWWy1njrNzl6w/8eRhWU9n9DmKnDZz7MQJ/QMzu+qqy2T9uuuvl/X77v2Suy1sjNPH9b1kdk7P2XdeoseD07Wtsr7Q1nMuM7NOX98rm339rBKkdH1TqPvx3i2Lur5Xr4vsP6HnDa+8bo+sm5lFse443pwodtauBoEe70Z6ep7Wd+Z7s2v63nLqxGFZNzNbWT4q61HXefaculDWGxn9vFUt6OfbnOl7zpceOqSPp/dxWTcz+6avf6uszy3pa1p2xvg33XSNu48z+CQsAAAAAAAAAAwRi7AAAAAAAAAAMEQswgIAAAAAAADAELEICwAAAAAAAABDxCIsAAAAAAAAAAxR+pxf6aQdesGZTs6mv3knFe5F5e7iJViLTjnpnIE+qMA5psA7s7GTkjfQKZiZlK6PlfwmkU7pn+WdtLq1NZ0kN7+kU1sPHtHpg2sdfe4yTjJx1nTSn5nZRTt0kmHfCZV+7MhJd1t46R15/LCsL62tyPqOKd02p8NQ1htZv/0HE5OyHtZ18mcu0H1407hOfSyN6e2XRqr6eLJ5Wc+U9Hs2M9u6bZus5/M5We/39DgROucvMN2Rek5q8SXOuBWtcweJu3rM7KV1PR3rVM7j+w/IerC2IOsd5zaxmtKJrRUnhdrMrJTWSexBV5+nbt1JUp52d4Ehmx7X/TWV19d9sKoT6qOmvk/W6n6ifamo+34Q6kaacca1VKz7a9zV9bwTe511+utaRyePm5n1a3pbnbbur9NTOv2409GvX3LmGY2G7ksXXLBT1ktFP5F5cVFfo8qoTl5eq+v+fWjhuKxPT+t7RbvtjBN9PVcKnXZhZhY4c9B0qNtAqajHfmyMmSk9p509qeeua2vOuOI8g8XrPB8FKd0WWh2dqm0NPVcKMnr8KGZ1UnnfOdbRsTFZr3v3TzNrtVuyns7q54tUXtePz8/Jes957szldDL8SGVC1q+96ia9ITO7cNdlsl7Kjsr6+Ih+DzPTekIxWtZjYL22IuvNlk5hv/XWW2XdzOzCCy+Q9a1b9bgcOs9/2DhhoO8ZowX9TP6F+/XYcs9RnTbfDXWfMTOLAz2uDaIVWd+7c4+sB2n9Hg6t6nvuSFOPdUfnT8h6Ub81MzOLIr3vaKDHx8BbDnLmaUFfn6N0oOeTF+/Qz4uXbdPzGzOz++/Wz0933/EFWQ93bNIbKur5dc95b13nNpUv6jGwPKLrZmZRT88pP/nZu2R9YkKPm2+66Rp3H2fwSVgAAAAAAAAAGCIWYQEAAAAAAABgiFiEBQAAAAAAAIAhYhEWAAAAAAAAAIaIRVgAAAAAAAAAGCI/Chwvqsi8NHEdb+cEalrg/CQ0ndCXNZ3ytmOTThHdOeMnxh098ICsp52l/OU1nUh64MDjsl7v6LTLMNBp0+XQSVzfrRP9zMw2zczI+v4nj8l6X4cVYoPMHtUp0oeOHJb17Xv19d45pVM28yN+dGVmXKc45rfpZMlCQSf7DvK6j8WB7kgDZzAIU/r13U5T/4KZpTK6L2ULOv12pKrTudNpLyHbiet0yoOBTvN2Xp7sO9a3rV6oT9Sqk1I6MVKW9X5jVtZTA53wmsnp6x+Gfop4uqe3FdZ0ovsTX7pT1rfsudjdB4araPrmsPvCvbI+PaLHg6NPPKa3n/d7gXfPNfP6k673O7od9px088hJpE6n9biSz+q+YWYW5vS2pid1Km6nrecynlJJn+9qtSrr7XZb1tMZf5ocOPHEg4FuG2GoL1yhpNOGvWNqtPX1CTP6nJaL+lyYmaUiPU71Wnof3a5uS9gYS4srsh7GzsQh0tcvHep2Hq33mBjrdt7u6rYzMTUh64ePHNX7dtLCe339Hqrj+rlmZNSf1x0+fETW01ndl5xwbus5E7VGS49bU9N6Pvk1b3yrrL/iqlfqHZtZMaf799TElKxXq/p8pJ055cMP6mc/736zdcsWWb/51Tc52zErlfQctJjX9fXmV9gY+aJ+Ju/2dfvc96juG2H8OVnf5LRPM7MTp/W+az39rLftej1P60b6mPJFfa/vpXUfyBV1+6yW9D3dzGzgjM1RoLcVB3rMSQV63IycNZa5Bf3euitPyPqOLf460YUXXiTr+x7SzzDNek3WMxU9N43z+n7krZnFsbP2ltJzVjOz6qS+T4XOXlZXVtxtPRc+CQsAAAAAAAAAQ8QiLAAAAAAAAAAMEYuwAAAAAAAAADBELMICAAAAAAAAwBCxCAsAAAAAAAAAQ7RO7OWXLy9T2EtPe2k4SY7OQaWc1Ml0oOtOYJxtm6jK+uUX7ZT1rPnJfScG+mfBQCehNhoNWe8M5mQ9LOgkz5GiTse8YpdOF921dVrWzcyOzS/L+olTOhE9WjenHS+1Y0d1im6n3ZL1+4+dkPUdu2+U9auv1nUzs+zUZllv93T7X+vqlM2+k/IdOYna/b7eftpJh40jnSppZtZ30oZXV9dk/eTJ/bLec95z13nPo6NVWfcSzBfn52XdzKzX0YPmIK376kRB11dqOpUz6Ortj2T1e85HK7Ke6vp/4+znnWTOgb52d9x6q6y/9l3f4e4Dw3Wpc58pOCnPM9u2y3oqo9tCa/WUu+/G2qL+QUq39dBJPu/1dH8dZHXbndiqx8Con5P144t6XDEzi5zJT7Ohx/LYSXvftm2rrPf7ui+Vy/r6dDp1WX/8oL7nmJml0/q81p25TybU7yFwzkUQ6OvgzUp6PWfemNHjvplZqeiMU119f2k3/TkiXnrNZlPWM84zRMobI7K6D/f9pmOB81wTxbrvZZ19BKZ3Uq1WZf1b3qPve9ddd72s5/N5WTczu9W5t/7Zn/25rJ88eVzWN2/RzyPlsk5nf+U1r5T11772NbI+Pam3b2ZWceZRuZxOQ59w0r/n5/Vz0IEDeh44cOam88787aGHHpR1M7Pdu3c529LPi979ABtnYUHfG46f1ONEmNb34u1Tuj457g9Gza7+Wd5m9LZmtsj6gYNPyHq5pMeuXtcZ6wr6PcTrfPSx7zTp0HnWSzvzutD5fGU31vO9IND9eKSqt//aGy6RdTOzg8Vjsv6XzjpRraXnXeV1nmOVSN/uLIr1/a7W9NvSWtM5T87F89rAueCTsAAAAAAAAAAwRCzCAgAAAAAAAMAQsQgLAAAAAAAAAEPEIiwAAAAAAAAADBGLsAAAAAAAAAAwRDr6THHiWIPgxUmPT6VegvVgJ03RS1k833e2XlZjyku9C/QP8qFObhsv6bTLrdNjsn7B5ilZr47opL/F2QVZNzOL+joxLnQuXeCk2/WaOjG5UtaJnVumq7I+VSnI+urykj4gMzt89LSsNztOul3opJhjQ3S6XVmPnZTWzbuukPXUNp3u2MiNuvvut/Q+GnWdhN130iDHxvU+ul3dv7zkxb4z4kTxOnHGKZ2y+alPfFLWv/B5nRw8UqnKerujr8/Nr75Z1i+77DJZv/22O2XdzKzR0efVS8F83fVXyvrmHdtkPV3UY2OxoG+Xy7E+nnTPvw7Zpk4Ebff1+Vt6/uGbGJJLd+v288QJfY+ZXViW9XxZ37vzoX/RY6edrK3VZD1I6bYbO/XxXdtl/brX36L3O9Dzkn2PH5Z1M7N4oPtHoahThUMnCXjLFp1y3G7ppOajR/UxZbN6InPttTrF3Mwsk9ZzkEZzVdZPn9LJ6n3nHrJW09sZmL7OoXM9zfQYZWaWTetY4ekZfZ/aNKPT3rExIicWOtC3ehsfr8p6pqTrp077zwTe3D+f1X04n9f1Cy7YLetvepMeb2688UZZn57eJOtjVT3Gmpm9+tWvlvV3v/vdsv75z39O1ldXV5w96AuxaXqrrI+Uy/r1zrOcmdm4Mx/rO/eJQkHPcbrd1nnVzfQYvuaci7vvvsvZjlkhr+8hx44dcXbtxKFjwxTKeg7ecwaKONT3zzjQ7bbT9deJwoxu0zPTO/Tr03pbq2t6br5lUo8tKzV9L84585X0wF9ZimJvMcWr620NnGeSqK/7a6utnz3HUvqcTo1N6uMxs8Uxff6CQK+lDJy1sUHkrdfp13vPf3Ggx4n+wB8/1mq6/fWdNS0zPXadCz4JCwAAAAAAAABDxCIsAAAAAAAAAAwRi7AAAAAAAAAAMEQswgIAAAAAAADAELEICwAAAAAAAABD5EWpPktgTvLYee4wcNLcXgrevl+sY1pvK6FzprKm09YmSzpJbsu4ThOcGdXpbGPlvKwHsU6GS62zLD8xoRPxWi2dhtdp63TielMn91Vz+hyVnaTEdksnCs8u6+MxM1uoOSmfaX3+0hvYXiH0dbvNF3S/eMV118r6aKUi6+1m0911ZkSnQgcpJ6Gyq4/1xImT+vVOWqOXlhs6iZlh2olFNrPZ2VlZ//znPy/rN15/g6zv3nOBrC8uLcn6zIxOFp3epMeU13zNG2TdzCydcVI2I538mXaSWQd9nTac3nGRrEcpvd90X48pgxNOqq+ZtWa9NqDHxvklnZKOjRNmnXtGUd9zH3/8MVnfMb1Z1yf9RO/85pKsDzL6dxoN3X5GRvU9d/eVut9PbL9U1sOGvhfviXWfNDPLOLfWmQl9PuK07n+Rs51e20m4bel5SZDV4+bOnbv0Dswsl9XpwbEz3+t2dApxbVUnLB8+8risnzhyUNYHq3r8bTsJzmZmR08vyvrinP6dmW1b3G3hpVcq6flBKas7Rqms5zH9QI9nuZyf/LzJuX9fccUVsp7PFfUxlXT94osuk/VKZVTWq9WqrOfyup+amfV6+p67c+dOWX/3u/+JrEdOmvfK8pqsnzx52jkePQ+MnWc2M7N0Ro9d+by+T3jJ8AMn/Tt05lBO2TrOGHvHF27Vv2Bm99x1p6xPTep5Wq+rx1JsnH6kn5+ase6vzZ6+htWB0z7b/jXPFcb1tia3y3o61v21VNBjRXVUPzPOHZ+T9fFyVdbXW2+KB3q+FDvPNpHzHuJQj2lxqMeJdtefp8ntxP5CUaulx5BUoM9r1Nfbip2J3SDS46A3/gbOXKxY9t9DJq333XPOU3egx7tzwSdhAQAAAAAAAGCIWIQFAAAAAAAAgCFiERYAAAAAAAAAhohFWAAAAAAAAAAYIhZhAQAAAAAAAGCI0uf+Up0w5td1upiXGrtuBr2TAHf+wfUvTtK9u5V1Nl/M6FM9XdHplRfu0El/jQWduH3fHffKevkNb5H1sTGdVph10n7NzMandMJ5Y1Wv5VdKeluNpk7Pa9R1Gu/qrH7PUbRV1hfqfopoz0mATTkxnynzt4WXXs9J05zcpNtCOqPbYLurk7NHyjpp2MwsdsYhbyBamJ3V9Tldt5ROrtx74V5ZTzuJwmHK78P33X2/rLea+nxs2rxN1m+9TSfZPnj/g7L+tV/7tbLe7OlzenxWJ46amXvL8e5EAydxtOdcTy/xfMJJoS4X9dg+VtJjrJnZ8Y4+31kn0T2d9hOqsTEGsU6gHRvR/bI3ptN1R7O6/dRaui2YmfWyeVm/6BU36tf3WrI+UtZtfWyzTgbvOO22sbIs61FH79fMLFfWc59esyHrQU6/Z3cczOvX79q1S9ZTznUoFPX2zcyaTZ0G3e/rOc5opSrr2Yzex8ioHnPGRwuyfvTh+2V9pee3pZnNm2V9uaGv3ZPHnPsXNsSmTXpevm3ThKynMxlZn13S8++rJnQ6vZnZDTdcJ+teUvVdd94t65dccpmsj41Nyvrk5LSsh848vtfTY7WZ31e9+V6Y0uOEl2Cecc53pTJyXsdTyPtzgNWVJVmfmdFtw0wf68mTx2W964wfmbSes8axfm7yzpGZ2expPa60Gvp+0Gz69xZsjNU13f9ml5y229ftajDQ6x/NUPclM7PSlH5WqVT1tmJnwSbvzANC5/ksiPV7C3J6O0FX928zs5Qz5nQH+rk3ldLnO3DGqFZX978wpftrc21F1o8fOyHrZmb9gb6mQUqf70pBX9OC8xjb6en3EA28cVy/vlzxx9ORsr7W7Za+Pk1n3+eCT8ICAAAAAAAAwBCxCAsAAAAAAAAAQ8QiLAAAAAAAAAAMEYuwAAAAAAAAADBELMICAAAAAAAAwBCxCAsAAAAAAAAAQ5Q+1xeGwUDWA6dugV7fjSyQ9VTorweX07Gsp+OurOeyWWffzj6cY81l9OkJ4kjWM+lQb9/Mpiojsj45WpT1TZMlWT+8rLe/uDAn68eOHZL10dHLZT2T8d9DsaCPaaSoz3e5kJH1yGkyx46ckvUv3fegrB9/cJ+sb7v8er0DM0un8s4x6YPSLQ8bJYp035uampL1Xqcn6+mybstZZ+xYb9/xwKlndPsvTozpujPeZJx6HORkPYj9sXRleVXW02n9vmtrdVk/9KQeV1aXlvQxOecul9P7TYX+OLSwoAfBRqMh6+1OW9azhYKsTzvXZ3J6VNerZVnvtPzb62OrfVmf6ut7WmFik7stbIyUM/8oO023un2rrIcp3Qc+/YC+75mZrXR0/e07L5T1zdt3yvpoRfeBTkfv4PiBR2V99uRRWc/m9RhlZjaW1/fik6eelPWwqOdKuy/Vc5kwo/edS+v9Bmk9Nw3XmRPFsZ4h1Oo1WffuIenQGSsCfX327L1Ev76px7pcRp87M7NLtm6R9bW2bt9/8TefdreFl165rO8/F110kax3e3pOVBjVbefiSy5z9z09PSHr+/cfkPV+35krOXOWfk/3r8B5Zuv39Ty+3dbvzcwsdOYaqZTeRyql53WZtK7ncvqYymU9B1hdXZH1bs8Z9M1scXZe1scn9Jyl3dbHevvtt8l6vb4m6wPnfK8uLcp6cZ37wci2GVmvVvV87ODBJ9xtYWMEOX1924OKrJfT+r6Xm9DzlcVJ575nZtlZ/WyTaut+c9TpM4dO6rY7Pqbn4LWa3m+uqPt3IavnH2Zm6bwec7IFff8uFPS2nGHWVtdWZL3sHFPKeba9554v6h2YmUX6PfS6TV13FoRaXe95W7/eG/st1tfh1NET+vVmNnvRDlmvd/V9pBc9/5UiPgkLAAAAAAAAAEPEIiwAAAAAAAAADBGLsAAAAAAAAAAwRCzCAgAAAAAAAMAQsQgLAAAAAAAAAEPkxzc/Q+QkRcZOfnzg1WOdYFZIOclmZlYJdUrrdFknPG7dtlnWU1mdMJfxUnSdVHJz0tyC2ImkM7OsDt61Tksneq/Oz8r6oK+T3jJZ/R4OH9EJkjt26kTcSkknrZqZxU5CX5DS79tLG8449Ukn4X7zFn0912xF79dJwzMzS8U6KTFwukKPv1O8rOSdRO3de3bLeirUbc0J17XI6dvJtpxfSumxbkdB1yuBTs6OneTsVqwTbhs2IuuhM/aamc1s1n1p/2OPOb+ht9WoOenfff36bk+P4bUVnSy6sqTTeM3M9u9/XNZ7Tupzx0lGTmX1/aMxpc/3Xif2vhHo8aY50Ns3M+vHWVlvd1dkfWlJ3w+wcTIp3R4KBS8BWr/+5NKSrB+YO+buu+20reV6XdanU9tkfZDR4+ni7ClZP374oKxHjRVZz4/p9HQzs8aift9ri7qtZ3s6YdmbU+acpGbLOGnoznQvTOvXm5kV8gVZ9+5T3vgYBvp6hlk9H8tknAnlRXosCmL/PUxtnpb1yrSej51cWXG3hZee19biWLe11VV9b73w4stlfe+FF7j7rq3p+3e5rOcmziFZIa+fLeJYt/Pamp5/FEu6z6+s02bHxsZkPe0kt4fOuB84A0i5VJL12HleXFnR42I6POfH9f+n0dTPl2ln/Dhy5LCs15z5njlz1m5Xz/ci5/VmZtPOeNPr6me2XE7PobBx5mb1vfh4c6usd/v6mer0Ad3Hygstd9/jY7qflfNVWW91dN94zbWvlPX+QLfdUk5vf21Vv4eas15iZlbK6wEy4+zbG+N7PV1vNvUYstZwnvMiPb+Jcv4aSzyv15zCUJ+PprPvMWes6Mf6Oa/V0vVUqMeJO+/0nnnNDj1+WtbreiiySlXf784FK0wAAAAAAAAAMEQswgIAAAAAAADAELEICwAAAAAAAABDxCIsAAAAAAAAAAwRi7AAAAAAAAAAMETnHLfYDXVKWmg6eToc6HTE8YLeZev0AXffp9cWZH3XddfI+sSITsjM5HSKaC6rXx+k9Bp14KRjpgI/gTbtJGF2cjoVt9PVx7S6qs9F4ITlNltNWV+Yn5f1XNpP9I4GTiJe5CT0OUnAUaQPNpXTCalXXHO93k7VSXBe1AnRZmbR+SaM+kHz2ACplG47k5NVWd80Mynr9aZOCLZAb8fMrO+kcEexHutGlo7IeuHIPbLeC3Rja12tU2O7TnJ26CQKm5ntf+xxve++Hp/CrB4DI3OSK51bysmFOVnPOamS8wvLsm5mtuwkHUc9JxncGZ+Cnk7TrGX16xeX9X4X1py2VNFtz8wszOvxPd3V126+psdxbJxCqNN4g7S+tt4VPN7QydNR2Z9PtJf11k6fPi7rF1ywR28o1P2729NjWsZJph0f1XMrc8ZMM7OG05+sq+eUYyMzsl4q6POdyuixKIh1Wm4qdMbAtH8dUs4ccTDQ73vgnI9CVs99wryej8XOvaJYmZD1bs9/D0cfPyrru5256Y4d0+628NKrNfR89/5H98n6li1bZP3Ci/bKenqdj+r0OrqvZp2+12rpYz3pjFvdgY6j7vX1+NTr6ftnrabHWDOzbFaPB16adyrQ84ww5SSbZ/R2+jm9315Hj7GBH6pu4+NV/QPnubNe18nw7ZY+r42GTqXvR3o8azvJ5r2a/2y2Vtf3tGJe31sKBT1mYuMsntbX/dSKnistdXS9cEr313fsGnX3XXSeVcbHnN/p6/5XGNHtrdvWY0vpkktl/TMPnJT1Rx93nhfMLBfoPpBJ6X6Tyun3Nkg7782ZphVivd/RzXreuHuPPwd4ZPa0/p1dW2W9Zrof50q67gw5ZrG+/j1n3GwP/PGjd2JV1osjFV135qDngk/CAgAAAAAAAMAQsQgLAAAAAAAAAEPEIiwAAAAAAAAADBGLsAAAAAAAAAAwRCzCAgAAAAAAAMAQnXNUfBDrRMhcpNMxL921SdZ3TuhEspX8krvvQl6nquWKBVlfOK3T2bI5nWDmpS8Wyzp5Lszq12ecupmZOSm66bS+BFkn+byQ1++5UtHH2ov0dZudndXHk/JTdGMnfdyzsqYT/epOAmfX2Xzbibc76SREp0tV95hC7/05CXqB6cRTbIyUc/1KJd1fRkd1mmG9pRMqIyfV2szMAp2O6ZQtiHU777f1WBdmdd+2rj6mVKR37CVnm5k1W7rPdLs6kTdM64Ts8ekpvf01fawZ08dab+qU3rqTomxmVqnoRNVcRh9rIeuk1Xd18nJ5RG//ZE0PULGTeB50F2XdzKze0mnDm51rGurLgw2Uce7RPWdAWO3oNj3X031yZNpPAg5CPW9YWV2Q9VbT6U/RuCyPjet69tLLZD2s6f0uLeiUWTOzVtu5fzvp45MTzjHl9LjZd+7pqfVixhVnfDczi2M91vYHzmTGu4d485JAzxuDlHNQGWduWtRjmpnZqSMHZb3d0/fIlYGfNI+X3rHjx2W9VtPX7507dsp6Pq/vk6vLK+6+R0pO6rnzO+2Ovu996YH7ZP0fPvN3sv6uf/z1sp5O6/5y7NgxWTczazb1OLRzpz5PI05qdxDqPhw5n3XyPgE1e0o/v9br/pzota95layXyvr6eOfjxIkTst5s6uf87kBPTHr983tWNDPLOOfPuxeNjvj3R2yMONRjyNasHovykb4Xb7niclnfNO4n2n/q05/VP2jPyPLRo3rc3LVrl6y3OvpZZdDTz3m33HiLrB888Zism5nNrTkT/b4eLfpN3WfSKd3/qmk9H5us6OvQz+pnqnwxK+tmZv2Wfq4aL43IejattzVR0fO6ljMnKg/0XKzrPD8Pcv4YlenrY0o5xzpS0OfpXPBJWAAAAAAAAAAYIhZhAQAAAAAAAGCIWIQFAAAAAAAAgCFiERYAAAAAAAAAhohFWAAAAAAAAAAYIh2xKxT7OhH1su06ufDmK3fI+sqJQ7LeXCfRO1fQCY+9WCeStVs6YW7MSdH10nWLRS8FU5+2gZMUaWbWcI4pdtLYc3m9jzCt0/BGRnRS8/KaTsM7dVoncBZyOl3XzKzT0OmAJ0/Oyvq+A/padwZ67X/PZVfJeqakE+5zlQlZjwK/WXuJyV7rc8KMsUEuvUwn1mazTkp1rC946CQsxtE6iYmB7nt9p/F08zq9tbDpAlkfhHo8Gzhp3rE59XUabS6n9+GFcxcKejy45U1vkPWju3TiaLmkx9ijx07K+pFDfppxzumt/aw+1jUnwbzb0Pe0tbweS0+mTsm6E+prhYLzAzO7sKRTNtNZve9K6fzThjFkzr2y3tLt6vCCTp6uxTqdO3TmAGZm6ZLux3P1eX1MdX1MgQ72tamZbbI+XtX34uWjT8p6dnBU78DMcktzst7pOG09pc9Hd6DPRezc7OO+TmoeZJw+Ga+TBOymgOsxOJvT6dGW0fejgZMePejp/Xpp5ea/BUul9bZSLd0ui84xYWPMzy/Kej6v21raSXg+dUrP47POM4eZWaU6pn/H6UspZ27SbNRl/dOf/rSsX37ZRbJ+7SuvkfUjR47IupnZ4cOHZT1y2vm2LZtlveic72xWz30s1n3+scd0evrK8orejpndcMO1sj5ZmJT1u+++W9YfeuhhWR84z6ne+OQ9T6VD/3NfQUq3jb4z1pUKznnFhvnCQ87cfERf23a7LevO9NhWVvR6hplZv6vHkFZTr1sszem50t7teu3qqDNOzM3q7dx83U2yfuOleo5vZvY3X9T37/Gi7gNbs3re9VhTPyc3Q72WttLS56hS19dnpaPrZmZN0+PgsUX9Hi66VB/Tlim9/ja7qo91NKfvU5mys6bl3LvMzOK+3nc2502k/PXL58InYQEAAAAAAABgiFiEBQAAAAAAAIAhYhEWAAAAAAAAAIaIRVgAAAAAAAAAGCIWYQEAAAAAAABgiPz43WcopHX611R1RNaX5nSS9P333Sfrx0/ohE8zswuv0ilmE1s2yXrRiatO5XWKbuSkYccZJ1Vt4EQKR04yrZkFTkp7ykkeDZwU0cBJ3fXSeFstnWLX7XZkfW5WJ6SamT326D5ZP3lc/86J08uyvtTSKXnTe6+S9eq4TpnvOSG9Thh68rNI/zB2rs96SfN46W3dpFMLK1l9/TJ93c6Dvm4HnZ7fh7224CVkr5a2yPribp1YmwmctukkWmZTejwLQ78DVCp6vJ6enpL18XE99o6WdUr6oKtTdCNnbHzDhTfK+oXb9TkyMwubThp0YULW+8VxWe+aHsfTaX1ep0Z02xsPWrKe9UOl7biTvnnfF/5O1lsp/l76suNckxOLc7J+eOGkrLezTp9Z50YWO2msh4/pFPDHntCJ2zu37ZL1clX370xJ96XytO7fqbweu8zMwlP6Z3PHnpD1ljPtqtedMdsZl1MDfU9Il/X1HKxzHXrO/aLgJHd7873I9LH2O/pYa0t6DFx25m9xbUXWzcwmR/T8d8RJuK+39XiHjTEY6LlPpaLnzQsLC7J+6NBhWb/skovdfY84bSeX1wnZg4Ee68yZW506rZ8jHz/4uKzv2L5N1v/qrz6m92tmgTPvevKQTh6/4dprZX3bls2yPjExLetZ5/nyoPPeVlb085SZ2fKy/lmhoPextrYm6+m0XhLoOuNcFDnPTc79KXKev8zMegM9Bq7VarJec+rYOM2BnjdcerEeQ7Zs1q/v9vQ48aUD/jpROq/vrbm8btOvuuEaWd80pp959u/Xx5TPOPNAZw3s6DHdzs3MOh29j15K97PWmtMvA10vjenxINPV56gy0OtHI/VVWTcz27lF33eCpjN3LOgxYedmfV43jTlzSmds6XX1uajX9HszMwuda9p3zke98fznRDzZAQAAAAAAAMAQsQgLAAAAAAAAAEPEIiwAAAAAAAAADBGLsAAAAAAAAAAwRCzCAgAAAAAAAMAQ6Ug0oRvotMt9h0/LetzSaY3z8zpdrBvqRDozsyNrOjlzNtIJj8W0TpLLZfXbHR3Vsbubx3Xy52hGb78Q6rqZWRzp5L4gpeutpk5bc9MonQTfZrMp67mcTr5dXfVT706cOCHr9bpO8O109bFWx3VaaLqoU/XaTjPtO+ci5SRzmvnnKY681FZ3U9gAxapOdxwd1WnzIyM6pXpxRbepzsBvO10nnttLyA6CjKz3A71vL6sxFetGmGquyHo61Ps1MxufmJD1SkWnlM7MzMh6qaD3MTnlJDIv6kTm3bt2yvr1V/iJzM2DD8l6OKr3fSozIusHD+kk+UFPp5dGaT1mrrWcK9f1EzNbDZ3su3lGj409J0EUG2feSat+Yva4rK8N9H2y6/wtPF5nLMrn9TiYStdl/QtfvE3WN2/eIus3V/V8zNtvkNNzpXTV/zv/aEb3pyDt7COr+/Hamn7PUV/f00eLei4bOjf7Rl1v38xPEw9Tzvt2ktgHsZPgu6bToI/tf1jWe8tLsj6e8+8JVtWpxcFAz68ip46NMVLW/WJ6apOsnzw5K+sZp99dfull7r5TTjuvVquyPjWt729P3HW3rC8vr8j6o/selfWbbrpB1ufn52XdzGzfvn2y/sgjeh+333qrrO/eqecy3nXIZvXc9Pbb9Vgdhv7j+j333CPr1177Sll/4xvfKOv1ekPWP/axj8n6Q/sekfXYSSqPYn/sCAPdlmo1PVfynkexcXbv1M8X5RG9zrF1XLfpY7P6mh9f1nMoM7MLxkuyfvToIVnPpvQ84PhJPX+LM3p+UC7r544v3H9Mb39ej9dmZl93/aSsZ7P6WBdX9L5XlvXcJ3KGkCDS7235tH5uW856T6tmYayv0dqCPq+zxx6X9YfvuVPW2y29/cCZv6VCPa5Uxv01x05HPwPmC3rOWnCeh88Fn4QFAAAAAAAAgCFiERYAAAAAAAAAhohFWAAAAAAAAAAYIhZhAQAAAAAAAGCIWIQFAAAAAAAAgCHy4xafoevEqs2u6ZS0VKRTxNITu2U9dJLEzczW+jpZb221qffhJM0GTjJtZkmn3544pdeoL9+uEwB3TeuEcTOz2Em27PV1WmTTTeTV5+LU/JqsL9V1ytvVuy6U9R1OOreZ2e4du2S90dGpdI8+cVrW+04Ka3lUp9W1nEBNLzvaCeZMfub80EvzNCdxDxtjZO8OWe846ZHLp5x0RydxdXXhsLvvUla322JJp3JmCvqY0jk9NqZS55e07bXMeJ02m3P2PTen04M///nbZX3XTp34m87qc1Es6nO3uk+nIn/0Np3+bWZ2tN6V9frKiqwvreqxdK2pk4CjgR4zY+dvlpVRnVA6Vtbpx2ZmFxT0ePOKt10v6+lxfd2wcQ4tnJL1hbZub/2s7pfuvWedG1mQ0tua3jIl66eP6UT0W+/6nKxfsGuvrM9s2qKPx5nfNOs6pdfMrNbS/cyKeh7V7OnX99p6jLdYn6NuV/eloO7MxZxxwsxsYlLPBUedMcGbtISBntfVV/W87uSxo7I+7aT3jhb9RGbPYKDPRz/yE87x0qtWdRsMQ/1MtbCg+0vJaSPz807/MrPxqu6r2axuh149DHX7D51k6/vuvU/W3/qWN8v6pNNPzcx6Pf286M2JVpaWZb1R03210/mSrJ88oZ+PvO41OlrVPzCzX//1X5f1yy+/TNbf9ra3yfrior7Wb3jjG2T99MKcrB87ru+N2Yz/uS/v2SzlzH8HkX9vwcYYZPTc/G/u0O3h727T7SdTdJ5hclV331Uv7L6un/X+4fNflPW1NT1/e81rb5T1LTN6zrV/Qc+JOrF+FjIzu+riSVnfXNJznzXnWWj5Tr0ud7qnn0mjQJ/vMKMHo1zBnxMdeORJWb/vbj0O7t6zTdZXnOe2U3OLsj5Wrcr6yKi+r73ioktk3cxsbUm3mcpoUdaPH3nc3dZz4ZOwAAAAAAAAADBELMICAAAAAAAAwBCxCAsAAAAAAAAAQ8QiLAAAAAAAAAAMEYuwAAAAAAAAADBELMICAAAAAAAAwBClz/WFqTiW9TgIZT0KC7rubceCdfaufycIIr0P75icfXS6eq/dTkvWd27Wr4/DjP6BmQWB/lk0cHau37L1I/3emv2c/oXchCzPbL1A1vfu3qK3Y/75WO3q99bIH5f1pbWarEexvp4p51wETj122th6P4tip/0F67VLvNTijG5rg1j3i25fX+/TJ07K+uc+/kl33xmnjaQzehhN5bOyXqqMyHp1tCrr4+Pjsj4zs0nWi6WSrJuZ3X/3PbJeW63Lejmnx5W1UT2+D+rHZH1i6w5Zzy0vy/ri44/KupnZUjip993ryHo+1NenPKG3E3rXM6X/Zhk49bTp8czMLB30Zb3b1+8hHfv3FmyMIyvzst72ZlXOrSTjNZNgnemZHu4sXdBtcWb7tKwfOXFU1g88ofvf+FhF1rPOONGp6Xu9mdnhg0/I+uzSnKxHg4Hed6jH2VqtKeu9vt5O4PTX1dVVWTczu+oVV8n6WHVM1vP5oq6ndT20vKzX63oulhv0ZH3bjL7+ZmZpZ3zMpnUjCwr6fGNjFAr6Xry6uibrfaf9e3PdxcUFd9+tbfphqO/01VZT98kLLtDPIze+6tWyfvutn5X1e++9V9ZLpbKsm/lT/DD0PqOk55SNhn5v7bZ+xvMeU7x5Rr2u52hmZrXaij4m53zfcMMNsv7Qw4/I+ratW2Xdm5seO3ZK1r3nWjOzQaTH38C5cQ4ipx1jw7z1lrfK+th+fS9ZrOv7VeRc28WTB9x9t5b0nPr0ydOynurp9lZK6WN9/MBhWb/iootlPbeoj2fgjb9m9qFPPCbr5bTuOJmcPtaFpp6PpUr69WMF/XyRdobAek3fW8zMLrhwl6xf/orLZb2xtiLrU9N67apQdtYWI32OSiN67E8H/nUYKTtzn1iPwal1nvWeC5+EBQAAAAAAAIAhYhEWAAAAAAAAAIaIRVgAAAAAAAAAGCIWYQEAAAAAAABgiFiEBQAAAAAAAIAhWid+9+m8jPjY+Ykbgvi80ub11s7/mJzfcI4p9taoA10PnVRLMz95tx85CXrOvpeb+vX5UZ1+O13RCXCFkk45DtI6jdfMrN9x0gcXdcL50ppORu4NvCQ5XY+cVPrnw2uXfmjni7dvvHAZJ9EwDHV9fGxE1tstnS49OqHTXs3Mek4idb2mExODjk7FfeKATgX3Uo4zGZ1cGaZ02wzTfputOcc6iPTvzM/OyvpM4Y2yvmfESSpfWZT1jtO3czk/gTvrRMMHGZ0w7qVmRrEzDjn1gZOm2u/pthc5SeVmZq2do7I+3+voX1hpu9vCxljq6b7UC3Q7iZ047NCZT3gp2cm2dD1wtpX1Eu3Tuu0ePX5E1m+8TqdqB06fibp+H6itrMj6I48/KuuNpp5P5DN6Guv1+7ZzTLmsThTur/MeVm7T49rmmSlZv/TiK2U9cu5rM1t0+vyui3Ui84kjj8v68jpj0bSTNtzt6ftXtF7EOV5yzaa+N7Tber5Sqeh7j5fafeTIUXffI07bqTvHNOvMJ8qVqqxfccUVsn7fPXfJ+v59+2V9bHxM1s3MigVn3uAMst5Y1+noe3evp5+bnKHafY78/7X332GWpWd993uvnUOFXbk6V+c0SRMlzQiNEhKCIwkTjAkSmGTzgjGIYGxfNmAwQYCx4YhkjuDlYL/GgGQkhIQkJFmakTQzmtQ903k6d+WqXVW7dt5rnT+W+/SE313TPeo91Rp9P9fVl0a/2rXSftaznuepXXV3nP7MzCyR1N8zOzsj8+PHT8j8ta95tcwzGf38mF/Sc79Dh5+SebRG35FK6nHdyJCukt7jtD2sn9fecY/MX3O77luW6/q5tLC4JPPyrD8vOHdmSuaZV+3RudPfVZfLMj98QW//9LmLMm8645tSNCxzM7NWe5fMJxvOvGpB9y0pZ2Wvv8cZg0a6vw5rOl9c8McTw0N6HLV153aZP/3EIZlv2rRJ5gln3nvo0BGZe/1pyhlzmZlFGb2PXEL3UalIvw9Xg0/CAgAAAAAAAEAXsQgLAAAAAAAAAF3EIiwAAAAAAAAAdBGLsAAAAAAAAADQRSzCAgAAAAAAAEAXOTXUvlpcY+X6a3y5V83Y41VhMzML2rqaXNjWFWgbkX5rZlac1we6el4qoau2tZxq6J2ErsRuZlZt6++ZmivLvN1xKiY7a/+djr7ekffGBd4bSvXeV6pEVJX59MIzMg8aulJjqSen8wG/iu5KoO/JKND3TG+xKPNyednZw7XdF5XKqrOVNaroJpwu36lMW17R1/svP/YFmZecLjDq1xWZt43r673Y0sdjZra0qivytpz+ptnSVTA7Tv/eaumKoBbq7aedap379+lKp2Zm227eKfO5Zlnmbfq0G04jqathR0478Z5Xbo1Wv3irhU5l33RK90Xe3ZTL6nHD8rLuW6JIb6ntjCfWqhk7smGDzIeWzuptzTv3pXOh+np19ey+QPf9becWS3b8MdHMWV3t/R8+8XH9DU3d/27YNiHzlRX9rFiJ9Pu2EOpK74+emdXHY2Y36aLFFjT1WDPjNG+sj9XVisy9+Usyqe/ValU/6y9cmnT3XW861bMX9TN6fmFe5o2WbmsXz5+Redt5pgcJfV9s2bJD5mZmxZ6SzJeX9b2XTOlBTjqv+4l6Sz8n/KmWPjdv6GZmFnpVuxN6/Hvu3DmZ796hxyxBUu98eHhUv96bsjnHaWaWdEq6j23Sz4mx8XF3W1gfzY5+4qede6aY1OsirazuuwZ2bHH3/eH/9SmZB878bKBfjw9GRodl/v3f+x0yz2Z0m66s6jFUs+OvE61U9PWoOWPBWkv3d4efWZL5F05clPnp2RmZjxZ03zUy2KcPyMySHf1MyKX1sVqgr0errdtSNqWvdyalt99u6Ws6OjKkj8fMlqo1mSeduV5P/wl3Wy+GT8ICAAAAAAAAQBexCAsAAAAAAAAAXcQiLAAAAAAAAAB0EYuwAAAAAAAAANBFLMICAAAAAAAAQBetUW/xuaJXQnVm7xScSo7XqtPxyxmHdV0pL4z0OvhyUx/snFM9r+NUBbVIl7KtO6WA2041TTOzyUVdPXVuWeehU/XOK/MZOpcvct6gl/K2BV7ZTo9TYRbrY2/PRv2Fjn6fCqV+mdcv6TabO3iTu++njx7Xux7QbSqbdrrX40dl3HaqQXptNnDur6R335mZBbqyZH/foMwzWV1BdH5eV9+cDXSV48RsWebZUPdn3/qt3yxzM7Pf/4M/kfmFi7qKc+j8rDFX1JXEd+/VFYILeV1V/djTT8t8flFXgjYzW1jQVYXT+nJbSl8mrKMw4VQf955XHf0sDpxxQybhNAYzy2Z02y3k9fdkc7rt5iOd9+T09r2nZ6OuK+J2nGrJZmajIyMyHzmr+6JmQleBN9PXtRA4YxlnTNSo6Yq4a40BRnoGZH7umQsy/4vpj8g8XdJVn6em52TebOqqxUmninkQ6ffHzOzsuWmZ37xrq8x3jJbcbeHl12jo9zaR0M+9crks85WVFZn39Bbdfbdauh0uLevxgdcfRM7g3zkFazoVr8+eOyfze179ar0hM9u0eZPMl57S51B0xg0DpZLMo1D3H/PzizL3pii614olUvq+37Rhs/4G51lUreg+cHSjHnfv3bVH5qWeXr39mt8PeVXMn3pKj68unNd9LNbP4ScflfmWjeP6G5x1kVpNzyM27dnh7vu+N98n82ee0c+35bIeT5y5qJ+5ZWc8v2NC9x+B6fHHth27ZW5mFjV0H5xKO+s7HX2/FtL6PvviUzqvt/U4sN3W8+T+onM8Znb7LftlvrD8RZmHTv947qy+v71nQscZ1y2tLMu8WNR9lJnZ9EJZ5i3n+dVT1NfvavBJWAAAAAAAAADoIhZhAQAAAAAAAKCLWIQFAAAAAAAAgC5iERYAAAAAAAAAuohFWAAAAAAAAADoIqd8t3ADFon3Dsmr4Hut2/G0nCqOXpVSM7OopauqNZzqxFNOdbZq06mgntBVz8OOzhdWdFXCp0+ekbmZ2cmzl2TedJpRIqn33Y6cd8gpCxo672jCqYa3VjXjyPuak0fX3JrQTXv7xmRer+sqvbWqvidTTV2ZduOYrghtZvbUUZ1v3zkh82I2LfMvfu5zMu84FWu9+yjhVWEP9OvNzNIZXbEzldI/j9u+w7se+lgPPf2kzHPOPd9Y1e/b4adPOPs1W63qip1eTx6Fur9ORDrvyerr12nqiq1RW+/3sYeekLmZWWW2LPOf+PEflnmxePWParxMIue+7Oj2UAh0RdliMa/zTJ+763xWV+j2KqLncvq+Lwzq8Uc23aNzp5+oNPQ9GXX0PWZmVqvovjnf0f3mhsKozJstfV8GumuxTlsfU7al+6jOGnXJk2ldOT67Ub8/Zyf1uGty9rzMo0Bf76TzTDA9PDQL/f5j+YSuyDw7f0q//oCulI714d3zXhupOs/PMNTtfHllyd33/Py1PZcKBX1ftNu64UbOmGhoYEDmk5cmZT4zqXMzs03juj0/c+KkzJPOZ5eidkfmA339Mi/P6evqVf9uO++PmVnkzEl3bN0i81JeP1vyznNiaKAk89WVssyLzjizXfPnyKEzRgyc5+myM0fG+vnd3/4jmW/ZOCzzDWMlmafTegwwdtSZhJnZxPZtMt90u57DpLN67LNxo75nimndPleWLsg8cMYNnaYex5iZteq6b24ndH8XdZx1paoeZ/Q5c9J0SY9jEq0ZmScDf41laWVZ5qGzxpLJ6Ot68bxzXZ21roIzjm429ftw5pmzMjcz603p/jSZ1WPNweGd7rZeDJ+EBQAAAAAAAIAuYhEWAAAAAAAAALqIRVgAAAAAAAAA6CIWYQEAAAAAAACgi1iEBQAAAAAAAIAuouTympxquR1dBbPR9CsBJ0xXdFuq6ep20wu6wpx3TEGoj8krtTk1M6/z6Vlnv2a1UJ9DkNRVn51DtSB0ziHpfEPoVT3XL7c1qoh6FWC9yn1eFXisj5pTRXelVpP5YnlRb8gpLn3k8JPuvk8fPybzdEq3/1K/rkDbcaroOq3fEoF3IzlVet22bOZtqrdXV8esVisy3759QuaTlwZlPnXhksyPLel+7rBTmdjMLOFUfY6cnykGzknXV3Wly4e/8KjMO06l9/6Sfp/f8MZ7ZW5mdsutN8l8bJuuzJrkSX3DSXd0dd18UlegHSj0yLyQ1tsJG/6zp7mq+8GE0yd06rpPqNcaMk/16j6t4VTvTZjefs2p0mtmNnlJ9wmthj6mrNPPtupOZXWn2nY2qa93EOnqumHK65nNnMLdNj2rz7vc0n1/J+NsyOm7QtN9UeQMihIJ3SbNzKK2bpdn51ZkXv7SEXdbePl5z7dMRt8v3usrFf2sTyb9z+qUV/X3eOOMlFP1POscayGv78ntW/Rz8tGHHpb5k489pg/IzA4eOCDz4VJJ5uXFOZnPNXW/tXHjmMxzaX1dM1l9LapOX21mVmvqPjBwxprtmu7Hpy7piuRf98b7Zf7h//VBmZfnFmSed95PM78NtJ0xf8N5TmD9pJNZmU/PLcl8pa6fk5mMvjceP6bnYGZmU5O6TSeT+tlaGuiV+ZYN4zLfNDok854ePR8ZGRuW+ey8nquamfUVdP/YP6z33VvQ1ztq6rnNYKT765GxusyrFd2RF4t6vmhmtlLR44ZOS9+vzvTJSvv0F/J5fb0Tzpw+k9bjm1yyrL/BzMaGSs6+9XkHgbPzq8AnYQEAAAAAAACgi1iEBQAAAAAAAIAuYhEWAAAAAAAAALqIRVgAAAAAAAAA6CIWYQEAAAAAAACgi26Ymstexc41v+d67dup7BuYrizpVQJ2S4KaWSfQl3puqSzzWlNXvw2cEnBRqI8pcqolNzrOua1R5S10vhY4VYgTbrl3p4q5d1md6+1WgXeOJ/4e/TW/oPz1amW4HlYa+v1Ydqp/10JdbTKf15UXR3p0lUgzs1ft3CTzS5NnZH78qWWZd5x7z9Nq6UqXXptNOFXEzcy8eus9PbqC5Jkzp2Vec6qk9zkVhedndUXhQr+uVD42risKm5ktL+vrOjU1LfNa3XtPnX7IdD/XCXWfvHnzBpl//w++x9mvWS6vq5q2O3ofbQoB33BKSV39trdXV91Nec9i51nfbvp9kYXX1ockk7pN1+u6YbWc6rqrK7rKcaFQkPnCrL4nzcxOndSVjnPOtkr9ukJwMav7+GRC32OFvH5/Gk6F8Xqk3x8zs+XpWZlfKOuqz9XQ+dyDM+yKvB7b6/udsVW41jMndMZEgX6OzDfcwRLWQa2mq217VeU9XttJp/w5QaPqtCtnLtRx7qW28yyuV/U449abDsr8E3/3dzI/ffKEzM3Mdm3fJvOJrZtl/sS87tOCjr4v5qf12Kcnr/s5by5cKOmxkpnZQrks84vP6PHbxGZ9zs26bkuTly7IvNXUz4/tExMy7+/vl7mZWY9TcT2T0f1QJ/RGs1gvm7fpZ3QY6rGMt95Qq+nnZzrt90VNZ0y0PK/3feZ8WeYPP6L7ilRKt7ekc0wpp98sOeNDM7PBfj0PGxnQ89XBkr6fFmv6WkxNl2W+XNTrU/kefU9WNur32cwslS7JPJnQz6P+Ht3f9ffr8fXIoN53MpmXeTGnr/eQs30zfwmp09HPqejahuPPwSdhAQAAAAAAAKCLWIQFAAAAAAAAgC5iERYAAAAAAAAAuohFWAAAAAAAAADoIhZhAQAAAAAAAKCLdEk0IfLKsV4nXkXI67oPJ08655Z1lqgzaV2N11K6Gq+ZWaWuy6dNLy7KPHCq4kYJ/ZZ1nCqDgVNCPXSuxlr1JgPne7zrGjol5qLIq/irjzXhVMH0th9Ga/xswSsp73xP5J4d1oPXboOkvi8STl5wKtNu3KQr3ZuZDQ4OyHzbwoLMZ2bmZV6eGJe5V+W46VUqX9WVg2stv69uOZWwvfKO+/YfkPni8orML07qysHNjq6M+cb7XivzbVs3ydzMbHFBX9dqVVfqffjhL8v87Bld8TcyfS2yeV2l96ab9sm809Tvp5nZslP9NZVwKq0G/Lz0RtOX1ZVpQ327WtO59ZpNfb9GaxQ3j5z7OHDGAR3nkRtEun8s9ev+sRPq6ubLq05/MDWld2xm006/uWOwJPMge21ViItOtW2v70829UWanynL3MzsxDld+Xyp5rx5CT1GjJrO/e2MixNO7r3/fk1psyih39OG0wDTpqsQY3202/p96nT0cyy8xqrynZY/BvaeSqGz705H93WNjn5WfvpT/yDzf/Ovfk7m3/T2b5D5333072RuZnbm5CmZv/a1emwyefaMsyV9Xb1xYyqp78qBgUGZd5zq72ZmtWpF5sWsvleHB0ZkXq/qMeXc7Ix+fVOPuZYq+nkQJP1xzGpdt4G+Pl0Z/uVYM8C1KRZ0X9Ro6HxlWY+Dy8vO3MZ7rppZ0vTXBvv1ek1kejwftfW4odrQbX1hVZ9Do6UHgiurszI3M7swrccTCWf87419Cin9+lxWX4sFZ+1qcEiPcfe39srczKy5qvupUtEZp00M6Q2l9HaSOf2+ZTN6XJfO6f3WQ732ZmbWrunvabf0dU1kXvr8jJkdAAAAAAAAAHQRi7AAAAAAAAAA0EUswgIAAAAAAABAF7EICwAAAAAAAABdxCIsAAAAAAAAAHQRi7AAAAAAAAAA0EWpq31hFEXeF2QcBMFLOqBuSgShzLMpfazpKCnz2cVlmTcbdXff9ba+TpVV53sCve/A9LE6744Fzleil+H98dpMGOr3wXt9FHmvd66F11bNba5+7l5ZrIdMoN+PdlK3hUQuI/OeVI/MgzDn7rvdLsp8fLhP5p0dm2TebNT069sd/fpWU+a1mu47qqt6+2Zm5XJF5k+empF5pZLXx9TQ9+RyeUnmQajft8ceeVTmTz9+SOZmZoWiPqZij35/cmn9mMuknGeX09/s3rZF5qMlvd/JsydlbmZWKOjvKeSc9pe46kc1XiZOV2TmtJ8gqX/mncvqPiqd1rmZWeQM3Zpt/fpkpPuWvj49zpjYNqS3k9D97JkLl2QeJdP6gMxs/023ybyUL8g8lXTGRM4xRabfh9WVOZmHznhvZnpB5mZm8/P6godJ/d4lnPfBIt02gsD7nIQ+51ZLn3PSGSuZmUXOuLiT0s+dVMtvl3j5+ePm65O3O7p9mJklvfmf094STnNOOvORE0eOyfyXf/7nZZ53np/33HmH3rGZDQyUZH7T/r0yD775XTL/2Ec/KvNOXd9H9bbuOzqNlsyrtarMzcyyGX1hB8Z0X9p0trWwvCLzD33wr2U+54z35pd1Pre0KHMzs7Yz/nWnqkzNbjj5tPMc6+g8zOo86tXjG2eoFO/D9PPbnH3XnDWZxcaqzBuhnm+lUs65dXTDTWac4zSzpDNGTHjPb+ceyDj76OnR/UGfM3caGizJvNPy+6KUM4ce1LuwRO+IzGuNhsybkc47zbJ+fajbUjqrr4WZWbOtr1/HGael01l3Wy+GT8ICAAAAAAAAQBexCAsAAAAAAAAAXcQiLAAAAAAAAAB0EYuwAAAAAAAAANBFLMICAAAAAAAAQBdddcnlyKlu7VYuvAF5FYKjlq5SWXOqV16c09Uup7zSn2aWcC5Uy7muofP6yC0JuX5vRLers157LuM1vycMnQqwX00N/GtA3moyT6edsuBOtU5zKjiGzj1vZtZyvtZu6UqK7Y7uXls5vzqmEjhtsO30Wy2nuq6ZWbWiK38WC7pS5OPHLzj70NUxx4pOlUiv713VVXR1DxvrrOjrUUvrPONUYL1l55jM+4o9Mh8b1RXjUy2nTbbzMjczywe6zGsu4VSF9dox1k3Oq3Ib6Pcwk9HveTrlvOdrdBMNp5taqet7P+lUdR0e0G29N6vbbnlyVuYLFyZlPt5bkrmZWX//gMxDp5p4p+P0d05V7VpTbydI6H6i2tTbn5yek/n/2ZiMk8m0zBOB0w86933gbN8bT3a8cYyXm1mpV7/XQVI3wKU5/xmJl1/CmXdc67jZG2ckE35HVOrpk3kqpdt/LqvHB6WBkszbTd2fLczre3J0aFDm9apfzfvknO7TnnziCZnf8apX6e0cPSrzyakpfUw1Z9zQ0yvzQk6PWc388UHo9I1Ti/qYnj71jN5ORr+fe246IPP8lH6uzC8synwtgTPn9dor1k9/QVe6783pivZW0u2z1fLGAP7cZmV1Wea1ht7HhSk997CE7qNqTd3ego6+99KB7jc7a7RbZ9hgUUd/Tyqhv6GY18/04ZGizIeGdD/eX9Bj1nzgXDsza6xUZN52+qJ0Svdr2XS/zAeK+pjakW4b5UU95621nIttZm3nvfNGUcWM7rOvBjM7AAAAAAAAAOgiFmEBAAAAAAAAoItYhAUAAAAAAACALmIRFgAAAAAAAAC6iEVYAAAAAAAAAOgiXZJV8CpquqXonYqdXkVDd/truNbqiFGka5uFoVOx1qmQ1k441dnWWtMOvYqy+hzCyLlOXqXIa79868Z7r0Ongm8YOq93ztl7/Vr7vl6vR3clnVs+lfXKSjobctrIWnWfU14V4rTed9ur5t26tkrYXr9lWee+yOn+zMysv1dXrR0eHZL5TfsnZL6yrCtg1hteVVN9TO22rmjZbvnn4PX7qZRXqVznXrX6pPN+5nK6amrWqfhcKOhKpGZmOedrGWdb3rFi/YwO6uqtraa+BxJOXxREzr1Rq7v7TqV1e+jr0e2nXtf360pFV6vOOOfQce7vHtP3TD6rq/SamXUqumpt5Nz76aTXb+p9Z4v6Hms7/eyXjx6S+VxZXzszs2TWu8f1sSYDnYdOn+Y9E7wHW8IZgzpDWTMzu2n3Nn1MlbLMH52/5G8MLzvveeiNp691TBsm/HlWzRnj9BV0xeueklOFu1SSeSapG+6moQGZB865NRpOdXYzq1X0/f2ZT35K5u1aTe/b2X46oc+h1K+fH4267vcj5/00M2s749lqQm+r7vTvfb26P2s447fTR4/r7TvX1BuLmZk5U15zHo+WcK841svYZv0sadf0/Rd4My6nmYTeXMjMWo0FmTfbui1u3KznQpWqnpMsruj21qjpe8na+pw7a6xbZbP6xLMpZ67iPNib+hSsr6THh8VefUzZVFXmCXdibdbq6HNIBAXnO5yxjNMGWk3dBpIpvf18Xl+jwNuBmbVqznk71zuq62fC1eCTsAAAAAAAAADQRSzCAgAAAAAAAEAXsQgLAAAAAAAAAF3EIiwAAAAAAAAAdBGLsAAAAAAAAADQRUFE+XcAAAAAAAAA6Bo+CQsAAAAAAAAAXcQiLAAAAAAAAAB0EYuwAAAAAAAAANBFLMICAAAAAAAAQBexCAsAAAAAAAAAXcQiLAAAAAAAAAB0EYuwAAAAAAAAANBFLMICAAAAAAAAQBexCAsAAAAAAAAAXcQiLAAAAAAAAAB0EYuwAAAAAAAAANBFLMICAAAAAAAAQBexCAsAAAAAAAAAXcQiLAAAAAAAAAB0EYuwAAAAAAAAANBFLMJ+FZuYMPvt3/a/fuaMWRCYPf74y3M8AAAAAPC1iLkZAODFsAjbBUGw9r/v/d4X38bqqtnP/qzZjh1muZzZyIjZ/febfeQjV38cW7aYTU6a3XTTSz0TAF/Nrkdf9PM/f+X1qZTZ8LDZ131dPMloNLp8AgC+alyv/ua2216Ys3AB4CvB3AzAerve87Jn//vkJ7t99LieUut9AK9Ek5NX/vt//A+zf/fvzI4du5Ll8y++jX/2z8weesjsd3/X7MABs/l5swcfjP/3aiWTZuPjV/96AK8s16MvMjM7eDB+uIdh3Ad95jNmv/RLZn/2Z/F/9/Zez6MG8NXoevU33dJsmmUy63sMANYHczMA6+16z8uebXDwha9j3HPj4pOwXTA+fuVff3/804nnZy/mwx82+9f/2uztb49/teWOO8x+7MfM3vOe576uWjX7p/80XgTZutXsD//wytee/8mRz3wm/v9/+7dmt94a/xT3nnvMDh26PucN4MZyPfois/gTsOPjZhs3mt18c9wXffazZocPm/3ar1153eKi2bvfbTYwYFYomH3DN5idOPHcbf3RH8WfBCkUzL75m81+67fMSqXrdsoA1sn16m+u1mc/a3b33WbZrNmGDWb/6l+ZtdtXvn7//WY/+qNmP/mT8Sf43/KWOP/5n4/HS9ls3Kf9i39x5XuaTbOf+RmzTZvMisV4jPSZz1zf4wbw8mNuBmC9Xe952bP/ZTLxJ2nf9S6zX/mVeHyzZ0/8+kOHzN74xniRd2jI7Id+yKxSubK9djseC5VK8dd/9mfjfu1d77q+548rWIRdB5cfuGfO+K8ZHzf76EfNVlbW3tZv/qbZnXeaPfaY2Y/8iNk//+dmR4+u/T0//dNmv/EbZg8/bDY6avaOd5i1Wtd6FgC+2l1NX+TZty9eZP3rv76Sfe/3mj3yiNnf/I3ZF75gFkXxZOVy//LAA/EnSX78x+MJyFveYvbLv/yVnweAG99X0t8838WLcd9y111mTzxh9nu/Z/bHfxx/Qv/Z/vRP48nKAw+Y/cEfmP3lX5r9p/8U//eJE2Yf+lD8g6XLvu/74tf+P/+P2ZNPmn3bt5m97W0v/GESgFcW5mYA1tv1GCd96lNmR46YfeIT8Z9KqVbjcczAQNy//M//GX+K9kd/9Mr3/Nqvmf35n5t94APxGGh5OR4foXtYhF0HhYLZ3r1m6bT/mj/8w/hXXIaG4knGT/xEfFM839vfHj/gd+2Kf2oxPPzin9r49/8+Xvy4+eZ4gjI9bfbBD35FpwTgq9DV9EVr2bfvykDhxIl48fW//lez170u/kTHn/95vFhy+UH+O78TL9z+1E/FP539kR+J/z+AV76r7W8OHTLr6Xnuv4MHn/ua978//kT97/5u3A+9611mv/AL8eJHGF553a5dZr/+6/F+9+0zO3cuXkh585vjT6jdfbfZD/5g/NpTp8z++3+PJyive53Zzp1xX3XfffHEBMArF3MzAOvtpY6T7r77yteKxXgudvBg/Len//zPzWo1s//7/47//xvfGI+d/uzP4n7GLJ6f/dzPxb+huG9f/HV+S7G7WIRdB3ffHf9EdNMm/zVf93VmzzwT/zTjW77F7Kmn4knBf/gPz33dLbdc+e/LH2mfmVl7/695zZX/HhyMb/YjR679PAB8dbuavmgtURT3O2ZxH5JKxb9Gd9nQ0HP7l2PHnjtQuHwMAF75rra/2bs3/qT8s/999KPPfc2RI/FY5nL/Y2Z2773xr9dduHAlu/PO537ft31bPBnZsSNefP3gB6/8CYNHH437tD17nju5+exn4wVaAK9czM0ArLeXOk76q7+68rWbb37u34E9ciT+YEyxeCW79974B9bHjpktLcWLsc+ejyWT8Z9bQfdQmOsGlk7HD/fXvS7+W2e/9Etmv/iL8U9VL99cz/9JSRA891MgV+vZExkAuBpHjpht3x7/dxTp1zx7ofbZ//3srwPAZZlM/AmyZ0s9b7S6Vl/y7PzZkw6z+NOzx47Fv6b3yU/Gn1Z73/vihdYwjCceX/5y/L/P1tPz0s8HwCsHczMA602Nky57/rhHjZcue3bO/OzlxSdhv4ocOBB/YqNe/8q288UvXvnvxUWz48fjj54DwNU6etTsYx+LPw1idqV/+tKXrrxmfj7uX/bvj///vn1xZeFne+SRl+d4AbxyHDgQ/1rwsycJDz4YF8J5sU+Q5PPx31v8L/8l/hXhL3wh/tW+V73KrNOJP7G2a9dz/1HNHIDC3AzAjezAgfjTsqurV7IHHjBLJOLf/OnvNxsbe+78rNOJ/6Y1uodF2HXw0EPxg/XiRf81998fF4748pfjv7n40Y/GFTnf8Aazvr6vbP+/+Ivxr9IcPhwX0hkepvod8LXoavois3iCMTVldulSvFjxO79j9vrXm912W1xMwsxs926zd74z/hXfz38+Lpbz3d8dL4i8853xa37sx+K+7Ld+K/4bsn/wB2Z/93d82gP4WnC1/c3V+JEfMTt/Pu5Tjh41+1//K/6bij/5k/HEwvMnfxIX8Dp8OP614j/7s3hRdtu2eDLyXd9l9u53xwUHT5+Oi1j82q+98M8hAHhlYW4GYL1dz3HSZd/1XWa5nNl73hP3L5/+dDx2+p7viRdfzeL//yu/Eo+ljh2LCygvLjI/6yYWYddBtRo38LWqXr71rfEfZv/6r48/RfZjPxZnf/EXX/n+f/VX45vrjjvMJifjYjrP/tshAL42XE1fZBb/3bMNG+JCNvffH/dDP/dzZp/73HN/TfcDH4j7lW/6pvjvm0VRPEm5/Kt5995r9vu/Hy/C3npr/Enan/iJeHAA4JXtavubq7FpU9y3PPRQ3Jf8s39m9v3fb/Zv/+3a31cqmf3RH8V90S23xIseH/5w/PerzeI+7N3vNnvve+O/ufaOd8Sf7t+y5Ss/ZgA3LuZmANbb9RwnXVYomH3842YLC3FBwW/9VrM3vSkuvnXZz/6s2T/5J/H45zWvied2b30r87NuCqKIv/jwteIzn4l/Wru4SMU7ADeGH/zB+JNsn/vceh8JAADAy4e5GYAbTRjGP2j69m9/YeFBXB8U5gIAvGx+4zfM3vKW+A/H/93fxZ8qef/71/uoAAAAAOBry9mzZn//9/Gfmms04k/Jnj5t9p3fud5H9srFIiwA4GXz0ENmv/7rZisrZjt2xMVxfuAH1vuoAAAAAOBrSyIR/838n/qp+E/J3XST2Sc/eaWwMq4//hwBAAAAAAAAAHQRhbkAAAAAAAAAoItYhP0q9vM/b3bbbWu/5v77zf7lv+z+sQAAAADA1yrmZgCAF8MibBd87/eaBUH8L52O/+7hT/2U2erqtW3nr/7K7J57zPr7zXp7zQ4eNHvve69tG3/911S1A75WXY++6MyZK9sIgit90f/1f5mdONGtIwfw1eh69jmPP/7Cr7F4AeClYG4G4EbQjbnZ5X/f/d3dOmpcbxTm6pK3vc3sAx8wa7XMPve5uPDM6qrZ7/3e1X3/Jz9p9h3fYfYf/6PZO94R31hPP232qU9d23EMDl77sQN45fhK+6LLPvnJeLJRrZodOmT2n/+z2a23mn34w2ZvelN3jh3AV5/r1ed0Q6cTj6cSfAQB+JrD3AzAjeB6z80uy+df+Jooisc+KVb9bigMQ7skmzUbHzfbssXsO7/T7Lu+y+xDH7r67//IR8zuu8/sp3/abO9esz17zN71LrPf+Z0XvvbP/sxsYiL+qex3fEdcdfyy539qZGIi/unrd36nWU+P2caNepsAXhm+0r7osqGheDs7dpi9853xg/+ee8y+//vjh/tlv/d7Zjt3mmUycd/1Z3/23O0cPRr3bbmc2YED8XaC4KUdE4Abz/Xqc67G4qLZu99tNjBgViiYfcM3PPcT+n/yJ2alUjymOnAgPrazZ80+8xmzu+82Kxbjr997b5xf9uEPm91xR9xP7dhh9gu/YNZud+ccALw8mJsBuBFc77nZ5X/9/fH4JgjMPv5xszvvjPf1uc+ZNRpm/+JfmI2OxmOb++4ze/jh527vb/7GbPfueDH3DW8w+9M/jbdVLl+Hk8ZzsAj7Msnn4592XDYxEf/dIM/4uNlTT5kdPrz2dk+dim/aj3wk/vfZz5r96q+u/T3ve5/ZLbeYPfqo2c/9nNlP/ITZJz5xlScC4KvatfZFnkTC7Md/PF64+PKX4+yDH4yz97437rt++IfNvu/7zD796fjrYRhPWAoFsy99yewP/9Ds3/ybr/CEANzQrlefo3zv95o98kg8cfjCF+JPfLz97c/dX7Vq9iu/YvZf/2s8rhocjPuh17/e7Mkn4+/7oR+KJxpm8cTlu787nqw8/bTZH/xBvJj7y798fY4ZwI2BuRmAG0E3xkk/8zPx2OfIkbhv+Zmfif+cyp/+adzP7Npl9ta3mi0sxK8/c8bsW781Hh89/ng8h2OO1j18MPll8NBDZv/tvz33V3Z37jQbHva/58d+LP6pxc03m23bZvbqV5t9/dfHPynJZq+8LgzjyUFvb/z/v+d74l+LWWuycO+9Zv/qX8X/vWeP2QMPmP2n/2T2lre85FME8FXgpfRFa9m3L/7fM2fiT5X9xm/EiyI/8iNx/pM/afbFL8b5G95g9vd/H09OPvOZeDJjFvdV9D3AK9NX0ue89rUv/LMBtdqVojcnTsSLrw88EL/WzOzP/zz+ZMmHPmT2bd8WZ62W2fvfH//5FLN4wrG0ZPZN3xQfi5nZ/v1X9vHLvxyPkd7znvj/79gRf0rtZ37G7N//+2s5ewA3KuZmAG4E13Oc9LnPXfnvX/zFK/3H5T918Cd/Ev/GkJnZH/1R/IOeP/7j+NP9v//78Sf83/e++Ot798Y/cOIH0N3BImyXfOQj8a+UtNvxBOCd73zur5a82N8PKhbN/vZv4wWLT386Xsh473vjv8P4hS/EnyQzi39Scvkhb2a2YYPZzMza237Na174/3/7t6/2zAB8NflK+6K1RFH8v5c/QXbkSPyJsme799643zIzO3YsXiC5vABrFi/eAnjluF59zv/4H89dHDWLFzsuO3Ik/htn99xzJRsaiicOR45cyTKZ+FMglw0Oxj8seutb4wnKm99s9u3fHo+fzOJP9j/88HMnHp2OWb0ef6r28vgLwFcX5mYAbgTdGidt2RL3RWbxnyK47NSpeD/33nslS6fjOdjl8dKxY2Z33fXc7TNH6x4WYbvkDW+If+KQTsd/2yedfmnb2bkz/vcDPxB/JHzPnviG+77vi7/+/O0GQfwT2Gt1eREFwCvL9eqLlMsP7u3br2TP70ui6Er27P8G8Mp0vfqcLVviX5d7tmcXnbj8Q6Dne34/k8+/sN/5wAfiPzfwsY/FY6p/+2/jT4S8+tXxGOoXfsHsH/2jF247l3tp5wJg/TE3A3Aj6OY46bJi8cp/P/9DM8/O15qjeeMsfOX4m7BdUizGN8W2bddv0WNiIv4p6+rqV7adL37xhf//8q8VA3hl6UZfZBZPKP7Lf4kXYF/1qjjbv9/s859/7usefPDKT2n37TM7d85sevrK15//R+EBfHXrVp/zfAcOxJ8i+dKXrmTz82bHj7/wE7TKq14V/+3FBx80u+mm+NcBzcxuvz3+RMiuXS/89/w/jwDgqwdzMwA3gpdrnHTZrl3xbwU9e47WasV/U//Zc7Tnz8keeaT7x/a1ik/CrpM3vcnsm7/Z7Ed/VH/9538+/rW3t789vkHL5XjBo9X6yv8+0AMPmP36r8d/ePkTnzD7n/8z/vUaAF97Xqwvumx+3mxqKu6XDh+Of03uoYfiviOZjF/z0z8d/1rv7bfH2/3wh83++q/NPvnJ+OtveUv86ZH3vCfug1ZWrvzRdz7xAXxtuNo+58Xs3h3/Ct8P/mBcPKu3N/6bips2xbnn9Om4KOA73hF/AuXYsXjh9t3vjr/+7/5d/Pdit2yJ/65sIhEX8Dp0yOyXfukrO2YANy7mZgBuBNdrnHRZsWj2z/95PE8bHDTbujXub6pVs+///vg1P/zDZr/1W2Y/+7Nx9vjj8d+QNWOO1g38TH+dnDplNjfnf/31rzd75pl4UrBvX/xHlKem4sI2e/d+Zft+73vjv3n2qlfFxSZ+8zfjv40G4GvPi/VFl735zfHfNbv55nihY//+eGHiDW+48pp3vSv+22jve5/ZwYPxwsgHPmB2//3x15PJuGBOpRL/3aEf+IH414DN+DVf4GvF1fY5V+MDHzC744540fQ1r4l/de6jH137kyWFgtnRo2bf8i3xrxH/0A/FE50f/uH46299a/z32j7xibifevWr44nJtm3X55gB3JiYmwG4EVzPcdJlv/qr8bjne74n/rDMyZNmH/+42cBA/PXt283+8i/jD8/cckv85xIuf1Dm2YUHcX0EUcRfe/haMjFh9i//ZfwPANbbAw+Y3XdfPBi4XKkcAADgawFzMwA3ol/+ZbPf/32z8+fX+0heefhzBACAl80HPxhXBN29O154/fEfj6t1sgALAAAAAC+/978//g2goaH4QzLve9/1+5MIeC4WYQEAL5uVFbOf+Zn4p6rDw/GfOfjN31zvowIAAACAr00nTsR/+35hIf67se99b1zAFNcff44AAAAAAAAAALqIwlwAAAAAAAAA0EUswgIAAAAAAABAF7EICwAAAAAAAABddNWFuR45c1zmJy+clflCrSJzb9V3sNjn7juZSet9rCzLfKW+KvN2pyHzXC4j8+WVFZkvlcvOdnIyNzPLZbIyD8NQ5u12W+bNZlNvJ9Lb6Tjb9/a7lrDdkXnk5EEQ6Nd7f4bYydum80hv3hIJ/2cLCeeY0mndBrJZ/Z7+x+/5cXcf6J7v/X+9U+Ydpy10nLbj3RfJVNLdt9eskknddjKpov4Gp/kndRdhew7slPlN+3fpb6iWdW5mVtf3ampgs8wvLi/J/OQjD8u8VavKvNFuyTx0Lmor9P9U+f/+3KMyP3XyoszzaX0Pj/UUZJ6LdN+7VNXnttrRr19xcjOzoc0bZf6f/+gPZH77Ha+S+daRfncf6K7X/cLvyjyf0e0q0dDjj0Kon+nFgh73mJnVQ72t1uqizDs1PZZpOOMJS+nOKJPOy7xZ1fd3X65Hb9/M8oG+x4tp3Uelk7rPrtT1tWg744laU79+0enrevp6ZW5mVnD67NVKWX8hoYfcUaCfO5Hzeu8hErbrMi/knGeRmSUj3c6c4bKNDm+Q+fv/w79294HuOXPOeaNMP38SSd12ks6zOLnGR3USST3wSjj3asJpt0lnXJ5M+uOxbvPmLylnjJhwD9W5V50xqDc/8o7nxb52LfvwxsUtZ7oY6q7avKFPq+2P6zod3dDazs6dKbLt2qGfv+i+V++9VebeexiFut0GaWfOn/DXLTJp/RzzlhuaDT32CZx7IFfQN3jSe0a39I6bLa+/Nms4Y5N8Qc8xG858Lp/RxzQworeTSuuBTDqjxw0p89+HhQU9jmqE+v722kC7rseUAyV9DmMj+hzakfO+pf0H20RJn3e9qY8pML3vX/rzv3X3cRmfhAUAAAAAAACALmIRFgAAAAAAAAC6iEVYAAAAAAAAAOgiFmEBAAAAAAAAoItYhAUAAAAAAACALvJKr77AcL+uwlyrDsl8sK0ryiadKrDJNaph1wNdiW26rSvJlVd0dbaooyubNRtXfRnMzKyY19UXs3ldhdvMrO5UB69UKzK/1sqZqUCvp3tVM72803HKXa7xtcjJvX1c67m1I+f1TkHQhFfG3sxSKf1eJ5wyn62Wft+wPrz3o+1U2u44bSp0q8P6/VAq6VS2jpz7IlyW+ZaxYZnfedtBme/ZvVnm2Yw+1qPnTsjczGx5Rh/TrtdslPlbvuEbZD6Q033d5NOfl3k+oUvZFop9Mq+broBpZjZ74bzMlxcWZL60pPe9uKr7laTTBbZCXX216fS9oZObmZ27MCnz3/zV35b5P//RfyHz7/zWN7r7QHd5RXEDp/p4rqgrqGacitHN0H/2NJ19ZAb0uKsT6ErAXonprOlxWibS90CqqO/XhFNR2Mws5VQ6Ljp98MKlaZlPV6sy7ymVZN5xSneH3hig6Vw7MwuT+noknaG1VzU85VV2dt6HWr0m83ZDt5mMOTteY9/FvG6vu3ZMuNvCyy/hdUTu668x929h92uJhB6cJ5xxWtKZKySTegfeXMHjzUVeyvcknJNOJLxj0nngjg+81/vn4H3Nu0yRM6cyb87mvG9m3jF5807n5WYWpvUxpTP6ered6vNYP+2Wfs40mzrPO/OInj6d1zt6zcfMLHTWWJp1/VzP5nW76u3X+y4WemT+zHE9Lok6un0WnLGSmb/WUa3rMUg2pY81dMYN9aazTtTU16jXuSeLff5DYVNxQObVht732bNTMk9n9LllAz0u2Tyk57CLzhh3bn5W5mZm86u6LU1sKsm85bTvq8EnYQEAAAAAAACgi1iEBQAAAAAAAIAuYhEWAAAAAAAAALqIRVgAAAAAAAAA6CIWYQEAAAAAAACgi666rGZPQVcq275BVyRrtpyKsh1dbW12bs7d9+ycrmI20Kur1UVO4bZGXVfRzThVzxNOZc7l5SWZ16q6Yq2Z2WKtor+npr8n4ZQqTae8Y9W5V9Sy09HV8LzczKztlPYNnGrGXsXOMNRtwNt35FRabTuv9yqqrsWrtuoVEcX68NqOV73Vr5/qfcX/uVQU6XusXq/LfM+uDTJ/0507ZJ6p6T7w2Ce+LPNWS+93aIfevplZ38E7ZR4V+vU+nErA+w4elHnt4pMyX7lwVB9QeVLGYaKgX29md2/Rx7old7PMv3xUVy89cW5R5h2vanHgPC6dTiKxRgXntNP+Tp44K/PjZ3QFUayfqOlV6tXtJJPTVV3zKX2PhWs8iysVPZ7opPUzOnKadDKtjzVqOv2sOVV082mZF9t6zGVmNlLQ+w6X9H05d+mMzltOZXBnHJBwrnfOqdS81pgoiHSl43xa91+ptG4DncgZ4zj7TRf0fqvOdnJpfW5mZtu2bJX5QF9J5jcd2ONuCy8/d4zqVqLXnUHkbMgbG8df83LnC84xeXMFj/d6L/fmU9dzH2uNNvV23K9c03bM/HGxx3uvvX271+K6nbNZInGNx+S+Huul2dLrGTlnfJDrde7XpH5v64v+eCKVdcYgffpZmS3qPJPVfUWr3ZJ5J9TjQK8PzOWLMjczazb1+KDddNZeMvpYl6vLMk+l+mReLJZk3lrR+52rO+t7Zlat6nnp4IAeg2wZ12OlQn5A5kND+vrNN/SxLldWZR44bczMrJ3Q7fjIcb32t2XrFndbL4ZPwgIAAAAAAABAF7EICwAAAAAAAABdxCIsAAAAAAAAAHQRi7AAAAAAAAAA0EUswgIAAAAAAABAFznlnl+oGepqaH19PTKvL+vqvSt1XbVtrYL27aautpbO6Sppo/26enYwoKuteVWIFxd1ld5ep7pdZUWfs5lZs6qrrQVOBb2MU7U46VQr94pUttu6YlyrpSv9hW7VTHNLoXoFL72qwl7VQK/CZyfUr3cKAa9Zzdjbd+TsI+DnFDeU0KtyG+j3PNlx3lenmXtVqs3MKpG+l7Zv0BUn33rnhMyLzQWZL07OyjxZ031mu6b7m8UZ3c+ZmR247S0yz47tkHltVff7+WKvzAsjO2V+6qmjMm8t6HOenFuRuZlZ2nQVVO8RcmCzrr5Z6tHVUZ86MSPzpYrXDzlV3gPdx5qZBZFur8t1nZ+t+X0a1sdQQberTFJXuC06fVfBecb0FUruvtMt3YFNLl2SeSPSY6hcSh9rp+ZUvw11deKM059uDvwqupl5fY+fnb0o88qK7jf7x3WfU6/rc6429Fis2Kf7tCDhPxNWV/SJDzlj0NGxcZm3Q72PVFq/P8OjozJ/5sRxmY+NDMvczGx4aFDm+YzuH1MMiW4orbY3Zr/GavMp5/nmjJnjL+ptud/jxd643JtzBM45OPlL4W9rjevRRWu9D9d6/by5VuS0DS83733Qr17zynlTT++0r+d7jetjdJOeeyScFuHNL8KWHu/m0nrMZWbWcRpKJ9IPrHpdj8+Dlh7PJ5I637J1SObJpj63QlbPX8zMwpp+3lectp4f0a/f5IxNWwv6nNvVssyrbf0+9G3aIHMzs3xRX++kc97Do5tlnuro8VtpWJ/b7KKeS6Y6et5eKo7J3Mwsl87LPDGox0Sl3be623oxDKcAAAAAAAAAoItYhAUAAAAAAACALmIRFgAAAAAAAAC6iEVYAAAAAAAAAOgiFmEBAAAAAAAAoIt0uTfh/LSuuruhX1dWLWV1BbMw1HnV/ErSe/bslnmlpiv1XpqelPmS8/pmx6lUvaKrkheLPTLfvHGTzM3MkrP6UlcqusJ5v1Ndt95oyLxW1xV/vQrBrZZ/vT2ZlNdcdOU+rwJnGOrrHfplMK9p+2vxqoUmAv3ziI7TNrA+MvmczBtOm0o5lTEzzo+f+vv09s3MNo3qe/LWCV15Ol9flHnUWJV5Ia2rR1Y7TkXLULfllK1RfdP5uVs6o6tsrtZ1hc9mUm9/ZEL31QNjum+cW9QVzzs1/76bW9XXY3BA98vN6rx+fa4o8zv262qdjx7Vz8CpFd2Hh4FfC7jj1AluVfWF/dQDR91tYX1s6++VeTrQ7+H4sK4c3FjW/UQ+q9uzmdkGp9r90CX9rDx6/rzMw5buK4qm77/Cqh4TDUS6n4gaKzI3M7uwOCfzmaQ+ptTohMzHtu6U+dnzJ/WOE/pYg0iPrVKR/0xIJvSxetXEEwmdbxzVlXrDUI+5hvtHZb4woPvTyLmmZmYXLs3IvOqMTZtN3Xe98a473X2ge7yq8v64Wb9/kZOb86z/auKN+9fizi/0ZbWEsw/nbXhZeOft5aEzLokifRJR6OTOOHOttyF0xure2xB21vHCQgqcdtKs6jF7xnkudVp63SKX859jHWe83WzrsUw6q7e1OK/nZ4GzXLZhJK/zMZ3PlfVajZlZMqc72+FSSeY9zvVoN/U5JxL6faiFOm8513TbyBrvg3MfR0097kql9TmnMnqtcLmiO4RiUc8xE1l9vYN2W+ZmZhVnHxu2bpB5vmeLu60XwydhAQAAAAAAAKCLWIQFAAAAAAAAgC5iERYAAAAAAAAAuohFWAAAAAAAAADoIhZhAQAAAAAAAKCLWIQFAAAAAAAAgC5KXe0Lp2YWZF5ZmJf57RN7Zd5arcr86clz7r43bNis991uyTyXScs8bGZlfnppUubNqC3zdKMh88wal3PryKjMO4NDMl+srMi83KzJfG55Seb1jj4Hi0IZj+SK+vVmtnlwWOaT87My75jeRyfUxxRGer9RUv+soBPob4ic7ZiZBc55e3lirY3hZVcaKMm82uzI3Htfd27R990du3RuZjYS6XtsdeGizOdWnf4pq9tzZXZZ5ssrui+IiiWZj03sl7mZ2cDYRr2tRKC/IdTXr+lsP9HTK/PeEd13VM7lZD5S6nP2YDazop85yw3dBjKh7pcrczMyLw2Ny/zADn0O1RMVmc/U9PGYmYXOsyJy+vepQ4+628L62FLM6y9E+l4a79d9Sz3TI/N25P+MPJdNynxbe4PM04E+1mZTH2tuWT/TBwt6v/OTZ2R+dknfY2ZmpxfLMm/3bZL5wKZtMs+V9DkPNPU4zdq6Py0VCjLvL/Tr7ZhZMqHfo5WVsszrNZ2HHd1vrizpnrZRq8u8UtXPqNay12ObJZwhTi6dkXk79LeFl1/oPLoDc8bHzrPe6bbWHE97XwtMb8w7Jm+c7Y+/ndyZRESBc3LxQTmxe3LOIXn9tc7dM3PO2ZsfrbWt0HlTI+ckvH14eccZ4oTe+7DWSTjzxUDHFngNFuumsqyfudmUvgcC0w2o2XLm4y3/2dMOnMaY0GPt5QU9DjBnzaSvqM8hGel5XqOj23qxRz9XzcyGB/UYpNHU1+PiRf2897qiiY16LNMKnHPL6bW0TNK5Kc2sUtFjk1pDX+9sVY9/B505YK4wIPNkoN/n+oJuM9WankeamSUTepw7MzMl83L1i86Wvt3dx2V8EhYAAAAAAAAAuohFWAAAAAAAAADoIhZhAQAAAAAAAKCLWIQFAAAAAAAAgC5iERYAAAAAAAAAukiXExM2jI/KfGHhgswf/8KnZO5VTvsfpw65+96/7yaZt53qt5mG3sf9+++S+eaJzTI/efq4zAd6RmTulik1s1Pn9baKxaLMq3VdcXt6WVd0W6rpa9FxqvemnJK4mTUKTm4q6ap0c0vOMa1W9YZSuvJcGOhjajsV7lttp5rmGpVQk0m974Szj7WuB15+6bTusrJNXaFybDAr8zu367ZcXJ1z9z01fVHmzYbed62t29rZsr4vmkurMu8f0ZXNM6NjMh93+kszs1yfU6HdOQdz7otKTVec9KqaZnL6HKKkvsGKJV0l1MxsoKr3PTtblvlIr648nkrnZL66qiuOlvL62o0PlGQ+U/XbUhTofaeissw70192t4X1kS/qvmhpRT+Lj585K/N6S98D81Oz7r4HEvoeGM7rPufgxB6ZlxcWZb40eVLmvUm937N1fc+cWpyRuZnZTE1XIW4snpN5va37hOyg7gc3btwp8zGnb9m9ZYPMc04fZWY2O6vPb2pWPyump/V4uVpZkPnY6EaZX5rSfUtlRedNZ6xsZtZX1P3jngO7Zd6T13051kcn1FXBg4QzPnYK1HsFr9eY1pgznDYz/U2hM56IvINyeQf1Ugbs3jE5FdrdXTjzGreQuHONQn0twjXmNZ3Iu376eyLn81ehs53QqfTu7dZ5m83WeJsD95u0xBrXA+ujUdXziCCn21um6MxtnHle4LRDM78frFRWZJ5w7vvRIf087OvX51Dq1/f98JjOV5aduZaZXXhGr6UU8noeu2NCr0XVQ71+1E7UZD62uUfm6YyMLZ3Qc1Uzs5F+PdYYHB2W+f5bbpb5zh0HZT47eUnmD37+izLvz+n3f3QwLXMzs+qqbkvnZvR4b/nsUXdbL4ZPwgIAAAAAAABAF7EICwAAAAAAAABdxCIsAAAAAAAAAHQRi7AAAAAAAAAA0EUswgIAAAAAAABAF+kSdEKxqCu9ZfKbZX7hkK7mHLV11bGBAV2dzcysujSl9+FUpp2Z1xV/U019ut/xtm+Q+SanOttipS7zVlFXvDYzqyf09zzy5UdkvlDT1e0qoa5OHLadquROebtUpCtLFjJOOTwzc77FGqGu9hcmdSXDTqSrIrc6Om875VnbLb39hF++1FIp3QYSThXRhnfSWBcFpyJ5Kavb7d17x2WeXpmW+dRF3deYmc0vVWW+WtUVJ0sDJZmfOqsrYacjfR8VxvplPr5FVzwf2LhN5mZmbaeCaLupz61e1ZUlK1VdATNs6Wuxsqirp184r9+HxWXdz5mZhYFuA522vn5tp4SvV2e12Xa+UtPXIp/Rx5NK+NU3W6arnVqk+/1E5Fc3x/o454w/nn7isMxXnHHJ+KCucLupt8/d956+gszTDaci+sKczBM1PS6Znz0r8+Wmrt47eUm/PlnT/YGZ2b179PhqeV73RaemTsn87JN6bDpw+10yf9Vdd8v8wN6dMl+Ym5S5mdmpE8/IvLKkr2unpd+ffFaPHffv0318Mqn7lsVl/WwZ6CvJ3MwsnXCqO5cGZZ71SiZjXXgV6s0ZN3tF6N2C9msMgUPvm7zvcfKWk4fONwRO3mzo52Q6qdu4mVnKqcTuXZCOc8EXnT62r0eP37I5f754zQLnArqNw+GNlZxGE0X6c1yBczwdr734u3bbWNi5xnND16WTTntwPu/nzeFDpzGk1uiLss54O9urG1BpQN9/ff16O8WS7kP6e/VYbGhkQOatjp7zmJnNlPUcozGj5wUH9uu+yxlO2NKS7h/vuk2vv91xa17mlbr/+c1NE3tlPjyix1f9o07ep8e/R5wx6OaNozLfPbFJ5qPjRZmbmT1z6rzM61/Q6wOBM667GnwSFgAAAAAAAAC6iEVYAAAAAAAAAOgiFmEBAAAAAAAAoItYhAUAAAAAAACALmIRFgAAAAAAAAC6yCkL+UJBW7/04x/7B5lHh4/KfOu4rmC2aUBXYjUzS68uy7zSbMv8XFVXAP+HRx/TxzQ6JvPX7dwt82xGV8l7+sxJmZuZrbZ1tdyJiQmZLx4/IvPQKS+ZcapR9jmVbJNObfBC2q/o3WjqSseVqq7cFwVepU0nd17fbuv3s+NUx4ycqrBmZgmnemO7o9uSc0hYJ/39uh+aGNSVFDNtXW3ymRO60vbKSsvddzLplJwMdJvqJHQ7XGjqCpUjg1mZ923QfeaOPTfJvL7qVySfP6erPrbruiJ53aleWo90HxiG+tzKC/p9uDSp+/bpOX08ZmYbN4/LvOGUcW6Euv/wKrlWq7ovCNv6mNodr7/R1yKmjymKmjJPeSWtsW6e+twTMs9XyzK/bbBX5gdHdAXa4TWKZ6c7izJfqem2G4W6D8lu0OOus0O64u/8hbN6O2l9L927aULmZma3b98h8/oWPVb63BE9Jnpi/rTM547q/nRpj67ea9smZNys+8+EfEY/d4adSsrFnH6vt2zcLvOBPv3+bBjVfcvZc7rycqHgVwLOOJXjm1Xd9w+M6GrvWB9e9fiEM/6InOekV53ey+N9620F3tjfeeZ2nPmIVyU96Yy5zjjjm9Qanzfau1fP8zrOhXWmWjZ5aVLmiU36/srm1ujgr9lLePPkVrw527XuVn/Ba5NmZitV3aclnKr3UchnyG40iZQ3v9btoVnRz/pMVm8n9Do7M8s5Y5CxDXrcNTCi2+LYJv2sbNb0/ZpIOK9v6LWXmSl/PGEJPS/oH9LHms7ouV5PXo99hvo3yHz3hJ5X79mnx425vj0yNzPL9e+Ueau1SeYLM/rcZs6fk/nsrD7nnTv3y3zXfv2+DQ3otmdmFoR6HH346JzM5+Zeel9ELwYAAAAAAAAAXcQiLAAAAAAAAAB0EYuwAAAAAAAAANBFLMICAAAAAAAAQBexCAsAAAAAAAAAXaRLogmtZV0tbPq0rkbZmtfVsGfndWWz05GucGtm9rqtYzIf7eg15ERFV6O8uFKW+f/3wx+S+eo9d8v8jjvvlLk5VbjNzE4fPyHz7Tt1heCNo/qc58+clHlPVlcz3rd1m8yzTpXKcLUiczOzZkO/d1FbV/sLnH20GroKZsu5fl718Y6Tp1L6/Tczi0JdpbFjuuqiU+wR62TzYI/MR3t0JcqLT+n7ZXJyXuZR4FesLRZ1xcm2U7EzndXH5FUCzvfoKp49PfqcTz71mMxX2rqvMTM7euwZmff26P5j98GbZZ7u1VW78xldKXR4XFfMTPcOyHzQqeBsZjY4qCuMX1zQr1+o6P5mU69+r9v1qsw7ThXx5aqustkO9XbM/ArLCacfcr8B6+bmgr6/Nw6PyHxLUT9MSs1lmbdrfvXWekc/cxMt3Ue1TLfFhUC/vjgwLvPauaMy379DjzP2jevK42ZmgwXdrzkFk+2eHbq6bvq0rkr+9JQeUz5xSPebt9xyq8x70vp9NjPbvkFXG05mdd+yXF+S+fhGPd6zSFcGTwX6mLJJ3TcO9Q3r7ZtZIa+PtVFtyrzojDWxPsJQPxuiSD9LvDyRcsbTwVrjaWce4TyukkndBwbOmKjh9IE1J2/U9Ty1uUZVdXPGGt65eR9dyjr3fLOp++oo0ufs5WuOAZxv8c468q6Hu2tn317ubOfseb1eYGZ2fvKSzA8evEV/g/f+YN20mnqsnUzqpaZWSz9j0ik9Lsln/L6o4DyWMvqRaD19+hvyaWdesKqfuQPD+vWt6qzMh4r6GpmZbbpPzwH3HuiXeV9O7zuf09d76/YJmZf69Hwu26fHspkef1yXyunvCZ2x5tzFszKvrui+fGK73n42WZb5uaPHZT4/qOeqZmYXLjhLo06XMzml1zuvBktMAAAAAAAAANBFLMICAAAAAAAAQBexCAsAAAAAAAAAXcQiLAAAAAAAAAB0EYuwAAAAAAAAANBFTgmwF8qGFZnfOqFLzx2NdDW3o8/o6rCT87pCsJnZsnOUzaSubrc0qyvu5ZwyecmUrkD78NOHZb51VFfEHc/5VWMrGzbLfP7ilMzLK4syL6R0hb7xkq5ud2Biu8x7nMrtRw49IXMzv/LhQF5XmcsWdOW+i7PTMk+EuhperaGri1rKqWS/RmX10Ktkn9ZtIPTKfGJdbBvWFbWjpXmZ15d1VfBGQ7eRRNbvEmtN3T4TzreknEqeqXZH5pX5VZlfODcn8+W27iMOHdfVws3MZubLMr/z7jtkXijqe7tneEDm6YzuV4p33iPzyZkZmR968O9lHu/Dub+de3ihovutsYJ+HgQd3Uf0DQzJvFXVfXh7jb4jbbpteD1XSDd0w9lZ0M+lnpzuJ9otXdF7elX3Ue2E/xxLeGWvV3Rbnz13Ur++d7+Ms5k+mQ8k9P2dautzOzen7w0zs5mCHiPWWvocwlA/74fHJmSei3S17fNnn5b5pVN6vLfnwF6Zm5kN9ek+xCtw3ts3LPP+Pn29k06PUEjq/qNTq8l8eV4/Q8zMBrfqsWlpSL8/Q/1OuWmsi0Zdz3cyWd1GvLGume5UWi3dn5mZRc5YO3D6Jy9POPuuVXR7XlnR1agzgT63fI+uzG1mVnfmF5mM/oxSJ9Tjt4JTnr3T0a+PnE7iWvP4a/r6Rc7AwX39NY4zImeM03TazCc+8Ul3WyObNsk8cPq6NoOiG04qpfuDTke3h0xaT56itn59qsfru8xyJd1ONk+MyryvV89tTj0zK/OBYb3uU63q1w8O6uN52213y9zMrLqsn9Pzs3qu1z/WK/OxMT3OqHf0M33ZbpL5eM+4zINAjwPNzMxZxykUddvYvEv3m5msnmP2l/Rujz6sx28PPnJc5iMbz+sNmdlNB/X1+4sP6XWGqQU9/r0afBIWAAAAAAAAALqIRVgAAAAAAAAA6CIWYQEAAAAAAACgi1iEBQAAAAAAAIAuYhEWAAAAAAAAALrILwX+PLX2ksy3bdeV5xaCZZlfyOrKqrUjukKlmdmZBV0ZLih41St1FbbRnK6sfvPmMZlXTh+V+YWHvijz0gZdZdbMbMOeXTLfsWWrzI+fOSPzmVX9PligK0WePK2rIo/0OlXmO/77UMjp5rJ5o64afubsOZnfNKarYHYKuoLpZx9/UuZRoKuOOm///6HbTKutz7tlfmVYvPySbV1J3Nq6orZXVj6Z1G0tDHVFSzOzekO3hXzKa1NO23EKfC4n9HaGb7pD5vfd/lqZb3/KqYRuZvOTkzIfGNaVKHuH9b3dP6LzVFrffNGQrqb5lm/7xzLP5f3KtwvndbXLDU39nj79pH69V123kHcqnjtVeis13XcEpqu5m5klnKrngek+LXBej/XTHzjPjKp+Ri/Vdd5x+ol24P+MPHIe04mabtMXj+uquwMlXV03Geh7oOX0dUuNiswvXDwmczOzaqTvj8KQHo/1jU3IfLVfVzlO1nVl9eTqtMxXLjwt8+p2XRXZzCxwxl1RUz+PosCpWB/1ybzT1G901NTnlk7o/mNh5qLMzczySd3+ttx+m/6Gjt431sfyqr73Lp3U1Z8zGd0GN46PyHzUGRuYmdWrup1XVnRfl4x0W0sHod5+Q1edXlgoyzxwntGDI7ratZlZu6X3babv7cCZd2QyeoyzWtFj1maz6Wxf97Fh5I+JvDPoeF9w8tAZE3lz6qbTxzYaut+65dbbnAMy6xvQ7a/ddI6p5V8PrI/InT85zzHneZVK6nsgk/Pf8w1b9DN0yBlPLDpzoWKvnkds3abvgeFBvbZTyG+R+eYteu3FzKzV0GOT3t5LMh8ZGZf50MabZb5c0f1vsaDPrdPQazgrFa9jMRsa1mtaQa5f5ht36+dLo677x/Ksfq596TH9zCk39Dhzb0GvK5qZfeTDJ2R++OlVmSeil/55Vj4JCwAAAAAAAABdxCIsAAAAAAAAAHQRi7AAAAAAAAAA0EUswgIAAAAAAABAF7EICwAAAAAAAABdpMvdC5OruhpaKr9N5rt26kqRcwVdqXqm7Vcqy1zQFffChK56tjOt9912qlEmneqie5wqldnylMwPLfoVaEcyeltf97rXy3zjiK7Iu1rT1SgnZ3SlvyMndXXi/JiuGDi8bULmZmbVuXmZDxacyr5FXa1u16CugtnI6mt0KKkr980HujJrO/CbdbKt23HDqdqaSepKiVgflblZmRcj3UekUrqPCBK6Ym3U0dU6zfwKtC2nUnnTqd46MKSrQfZs3SvzDQfulnnQMyrzbQf0OZuZbd2r91Hs0RXGB4d0VeFMVvex5lTXrTZ03xsO6Orst7zprXr7ZnbmyEaZn1v9oswTCV3pMjDnvc7q/uPYRV2hdKWqG0Ai0P2WmVkr0O0vbbodJ41+6EbTqOnnW61Z1t+Qcir7pnV7W17S4xIzs2pVV2nNdXSbyzhDvfp5XWl20626z5lO6r4lCvU9kB70+6KWLnxup+bLMm+vnJV5sk/3UZVFvZ1dOX2PdSorMp+/cFrmZmaTy3oM0nAqrqd68jJvOpXVLdTbKdf1xcs5/fjism6rZmYnTj8j875+XcW53twk8z37D7r7QPc8+tSjMv/CFz8v89XKssxvv01X1H7bm9/k7jvv9F3lxTn9DW3dbkt9ut22Orr9rzadsb8zfptd1HMXM7ORYT0fKRR035VI6n0kE7pfaTb13KJW02OiTE73EUHgV4bvOHPVtlO1O9HR++509D7azrikVdfvwwXnubKwUJa5mdmmzTv1MTX0MYVt/3pgfbTauq1Hpscl7ba+l3oHdL/SP5R29z3Qq+cF1YoeR3US+liHS+My3zGhn3sbtuyReTap75m2M240M6u39f00OqyvR7Kj5ySzF/T9PbJJ32OVip6H9fZvlvmGCb1+ZGYWBfq6Ls7pYz3+qB5fdSre/Fm3pdHBMzLftkGPlS9d1NfazOwfPuP0j864Loxeel/EJ2EBAAAAAAAAoItYhAUAAAAAAACALmIRFgAAAAAAAAC6iEVYAAAAAAAAAOgiFmEBAAAAAAAAoItYhAUAAAAAAACALkpd7QsXy8syHyj2yjyfKsr8prFhmfc1Vtx9t6NZmV9aqcn8QGlM5o88fETmTz5+XuZ35jMy79kyIvP5ypzMzcxmjhyS+fDwgMwP7N0n87FSv8z3Dd4p80S5I/PpqbLMx7dPyNzMLJ/PyTwT9Mj8lrfcLfNcvi3z5cefkPnTjUDm5bTeTtv0683M9NUwa3k/jujofWB9RB39Di6vVmWeyuo2m0jpri9ot9x9JwLdSMJ2JPN2Ux/rDuceK2zeJvN6ve4ckd5vX1+f83qzVEqfQz6fl3lPj763EwnnWrT09Ws3GjKvOa8vFHW/aGY2unmXzJv2qM6dm77ttKXFin4WTS2UZR5EaZknA/3+mJl13D4qqfdx9Y9qvEwqoX42dNx7w3l9O9TbX9X3jJlZtaX7u3RWj1m2DuhxVyXU90Cj1ZR5bnCLzFtzl2TeCfxzyPfq+6Y/o++BqVl9X84v6HFXraX3vc3pZxs1vd/506dkbmb25NSCzCebelu9zngveeGizPPO8yuf0Neu2dJtKcrp8biZ2WpNj6NPXpiSeZDVzwqsj0///Udk3u7o9n/y1HGZly+dkfni+dPuvgeHSjJvNHX/5I3f9uzeK/ORsQ0yvzSr77vAdPufPafP2cwsHeh7dcPmrTLP92Zlns3oe7K8pPutZLagjyerx3upwJ/XhAk9PqjU9TMnk9Bjk6Szj7bzjGqsLMq8vKDfny899CWZm5klU/rZNTw8KvPzZy/I/Oab3uruA90VOuOJ0BkTFQv6nhkf1etKExOb3H0HkW7THWcYvuemgzLfuEGvHxV6dD/Rbut7rJDR92SqoPsPM7NGQ8/dLpzW99OuXfq5HiT0OWR79dgn7fRpSWe+eOniMzI3M2tWJ2V+4agepyU7+r3eNqHHPtPH9PYP7tT9x/Hzer9/87ElmZuZLS7p8W/HeaaGkd83vxg+CQsAAAAAAAAAXcQiLAAAAAAAAAB0EYuwAAAAAAAAANBFLMICAAAAAAAAQBexCAsAAAAAAAAAXXTVJZfbThXrJacy7digrlS2IdUv8y3bdrj7fmh+WeabJ8ZlvnfnPTL/0oOPyfzQ08dkHhZ09cpFpwJnsHVQ5mZm9Y6uQPvYEw/LvFKekfmtTkU/27Jbxrv26mp4Ixf1+zPQq98fM7MRp4Jpxykon0zoL3T+5rMyr/7VR2VeGNTXO7VBn0PkVh43C50Kii3nPTWnAjbWR25YV6ydXtD3cMKpuJp3qohHDV0V0cysHTr3fUe3t0ZVb6uvf0hvJ6G3v1Ipy3w00pVIi3ndb5mZBU71245Ttdjj3EbmXCJLd/S1SCzP6+2v6ArBZmYlpzr3xg2bZf5oSlfZrAW6MuucU1G4Fupr5/U2aecaxd+k9+09kgN+XnrDKdcqMg9bTmVVZwxVreq2Xms6D1Yzy6R0+xnM6nwg49yYWd2u5mv6HJZzenxQS5RlHjb9/jRp+mv5UN84EyO6X6vU9f1dT+g8XdTnsFjRFd2DdlnmZmYFp/RyOqn3ncvrPJPWfVp5Ue876tdVlKOk7j8abb9/D0PdBpbquhLw42f8ysh4+S3PT8l8cEi3876crvK9NHVR5o+v6PmXmVnfiNMOnZll0ZlfFHr13Gmloe+vitM/9Rb0jrMJvx8qz+lq2/NLqzLvJJ3xXlP3H5FTMX5iqx6vtJr6vuvJ6UroZmaLK/p7JhfKMu8r6n6o09Dn3FxZkXmpV/dbx06clvliWT8zzcw+//lPyby/pNvGsRNnZP5P3/NWdx/orlxejz/abT2mLjjjj02bnf5gSa+jmJktrUzL/J679LrFpjG95jQ0Oibz2QU9Tgs7+pz7ivq+rzfWWFMIdH83MKqvR9P0fdyo6+u0NHtK5uVlPT5MpvR9vzCrnxVmZtu26WdCX1bvo627HFuaPC/zREb38Q8/pvvxv/roSZnPlf05VW+P7tfquos304/Uq8LMDgAAAAAAAAC6iEVYAAAAAAAAAOgiFmEBAAAAAAAAoItYhAUAAAAAAACALmIRFgAAAAAAAAC6yKlh+UJ9wwP6C1VdhS0R6PXdTFJXBi/2jLr7vuke/bUnyosyn23pqnSve+v9Ml9Z1duZu7Qg885FXY202OuXSBscG5F5IqWv09TkBZlnTVdMjuZ1lfFNQ/rabR7tkXl7ckbmZmbBIV2B3kxXT62XdTXBEw8ekfkDKf36SaftBYG+Fk2nEqOZWcepvNwI9K3gVYHH+ihsPiDz5CXd/sO2ru5YLGRl3qr51Tejlm4MTvFbW13RpRT7N+rquvmirsjYaDrV053q7NmU361HToMuFHTl3URS909BoPu6tul7r7Y4K/PZY4/LfGZa971mZosNXWVzs9NPHLzlVpmfeOrLet91/f6EQUbmyUg3gKTzDDQzC01XVI2cn4t61xvrp9XRz592S98DzZZ+/WpbV+5OJHQ7NDPrSer+K+c8+xpVXYL2YlXfl4dmnpL5UqiPqbOsxwDjBb/dZlr6vLOm7++GU1V4sFePrWpt3delA93Hd0Ldn7acKulmZtuKehzVO6CrFk839T7683o7uYLOG5G+FuWafh+WFvTz0cws6VynwCn5W/tKSgHjutsxsVXmkfMsHhnWczAr6qrW1WU9hjIzO3DwoMzzfQWZLy/re2ludk7mx0+elvntd90j8y2bx2XezJRlbmZW6OmX+aNPnZV5uabHdamcfnYnA92fBR29nU5D5xuHN8vczCw053ngjN9aTd0Hzl3SFcmTjYbM2yt6HDM9qefIbee5ZWaWyehjPXP2jMzHNm50t4X1kXDm0fW6HvuknebwyJfPybxU0mNwM7O77tZzw8HRPTJfqem2W1jV45KRQd1PJEI9V6mu6Pzok/rczMwKOX2dBkq9Ml+e168/c0bve/OWksznlvQ5j47p8d6WcX9hpN24KPNCST+PEn07ZT55UY+hHj18UuZ//7+flPlCxZmfJfX7b2aWdCb1pZKeJ0f20heK+CQsAAAAAAAAAHQRi7AAAAAAAAAA0EUswgIAAAAAAABAF7EICwAAAAAAAABdxCIsAAAAAAAAAHSRX0b7eZZbumLjwR3bZL5wTldZXNaFvq2R0FVgzcxKTvXK3f26EuaZC5Myz43oUnx3f/29Mm8/oyvM9eT0ZZsO9DUyM1twKuz2F3TVu1xeV4a7cOaMzDc76+nRgt7vqcO68ufUWX3tzMxqHf3m9fXqKnPVOf36k1ld4bD++tt1XtfvQ3lOt7GGUxHUzMw6utpf06nInExRCfhGEpT0PT+27yaZzx7XlRR7Qv2+huZXJF9ecKpqO5URa0197yWzusLitl27ZV7J6ErDftv0zyFf1PvOF/U+LND76DjVI6tLMzI/fvgRmS+ffUbmk+f8at4nz+nKu/07dJXNW199s8zPTusqpY0ZXWHcq3/ZCXR/E6zxPgRuMU1nW4G/LayPjnNv1ExXrK21dHXYRtupxJr3K0knk/p7lltOXtcNrlnU464o0s/0vDNk7BnT48Dte3R/bWZ27uhTMu8s6Psv49wb6Uif8+hYSea1pUWZp5p6v31Zf5icKJdlHubzMq+O6Xyl6RyTPjXLRro/SLX0Myq7xjAmauvrmgp1+8unBv2N4WXX2z8g85TTbDuhHuv295ZkfubUaXffmbyevyQTeudTF0/I/PxZPZZvdnS/1dfrzJuSusp31rkvzMyq9VmZ9zr9byajb6bCgL63z54+LvMpZ4yTaOt5U+2SHveYmYUJfT323nmnzEfHh2R+LtRz2KnTZ2R+5MmnZT6/qp91pQ36OWFmlkroZ87CwpLM99+q5+1YP6t13XbTzj2TTev3fLGst7N7h79O1JeqyHxl/kmZ9w5t169f2SjzqfNPyLxW02smyVD3RYWcM9cys05Tjx1nLurxgaX1WsrWrXr9KEjoOelASe+3sqzHRGeqOjcz6+vV63VBoN/ri1NHZf63H9NrVE88qa9FJ6HPoTSk++VOY405lfM+5Iu6HSfb+n24GnwSFgAAAAAAAAC6iEVYAAAAAAAAAOgiFmEBAAAAAAAAoItYhAUAAAAAAACALmIRFgAAAAAAAAC6yC/7+jyHzp6SeTatq4XdtE1Xnjs/qStCzpR11TYzs1f1jsm8ndTf07Nrq8wfLOtq2KUtulLk1q17ZX5gyxaZH76gK32bmR09qfd97oy+rsVtukLftg2b9etHdBXihYour/u/Zy7p12eccrxmlhvaIPOKUwlzcVxXByz16EqeAz19Mn98UlcXnW3o9z+R9qtKp/WhWmj6e8KkW8Yc66DuNM8LpttOcd9dMh+Y0vejNR93991abugvJHQbCUJdDXJkTN+rGzbo+2vBqapecCqO5p3czCyT0ccURPoc6jV9jzUb+t6urerqupUVfe2eeFJXSz5+1K/IXGvqRrBnbFjmO27er/O9e2Q+fXFO5rOz0zLvmK42HazxM87AdGXOjumqnMnOGuXNsS7aznu4Eur2udLQFX8Tbaf9pPS9ama21NDVaReaelsp0+2nuHlE5oUlfQ49ffoeW17W98zxI/r+NjM7uEuPr1YLzhjxnB6z1FdWZN7fqyvWjvU5Vc8jfe/lskWZm5klA115txLpe3/3Vl0dPNdTkvnKtL6uq6v6nDOmKy+na7q/NjNbqOu2tDw/I/P+BH3RjeTClL5fhkcGZR447Xm5pfuOM9Oz7r43L+vnfV9RV+ce7B+Q+Uz6osxXK0sy7y/qe3vywnmZNyq67zAz27ppt8zTTjXvcllf7/MXdd5s6qrtUwt6PFFx8qGC7qvNzNqhvu+rTf3+vOquW2T+6EMPyPzMET0HK5V0G7NQLy0cOXJEv97MTp89KfNiSc//R8f0XBjrJ3AKzucy+n6trtZkvnWT7j9e+9rb3X0P9Jdk3unoZ99wUe+7vPiUzKdn9PNwbGiHzFf1cM9my7qvMzOzln4WD5b0MzdIe/MIPX6rrzrztrruoxYW9fxvwwa9xmZmNjqu78sHP6vv/c98Vq+bHTmt5711Z+7ZinSezuqxWKlHj93MzPpK/TK/da8esxaTTsO/CnwSFgAAAAAAAAC6iEVYAAAAAAAAAOgiFmEBAAAAAAAAoItYhAUAAAAAAACALmIRFgAAAAAAAAC6SJcwFL4wfUbmS21dUXb7iK4Cu2/rhN7+Yw+7+z5yTu97dKuuJt50quW++qY7ZP74aV358cgZXWlzT+92me8a9as1Dud0VeHZjRtlPjN9QeZt5y0bHNbXe6mkK8y1XnObzAtO5XEzs+29ozLPBrry4UxCV6tbremKnY8df1rmF1d0xcBaqM/N1jiHQkZXRs4l9c8jgvClV73D9ZfJ68q+p+o6X1koy/wN4/q+S+R1hVYzs1xeV+qNIt0Og5yusLhpj67Gmy3oc2hf0tVyZ+d1HzG6we+HFsqLMs/ndaXIQkFX3a3XdenPRlM/D1KZXpkvruprt+RUwDQzK/TrbeV6emQetnV/MLFd9+NnJ/R1nS8vyPzmm26S+S233yZzM7NkWldePnxYVxA99rjuG7F+6k67Wm42ZL7S0m16IKXvvcYaz56Li7qabWC6qnCpoPO0UxG96vQtybyu0rtzm+5PD336H2RuZlZuRTKfOHhQf0NO949njx+V+aVJ3W8WN5RkHqX0uS3X/L5oIdTvXSWh+82xeb2tbEWPcTbk9dhqKaXzYlpXK+9J6tebmfXm9ZioE+n3p7efz27cSHrGJ2ReD3T/lC3qcUnKGcekM/40sdnUY/k777tT5pPT+p4s1/V2luv6eRhEug2ulvX95RRINzOzWkOPZRbK8zJPpvW9ffz4OZnv2jUh81agq7Mv1PQ4M+NUfzczu32/HoM89JlPyLwyq8e5Xz78mMwbFT2uG9+4RearVf1cmZo5JXMzs94h3S5HtuyReSKhx1BYPz15Pc5IOJ/3S6f0s2fP9k0y7+vVaz5mZlFGtx/r6L4l39+n9zGk+8HhvtMyTwZ6LDa9rM+5WdDrKGZmPXl9DitLczKvzM7K/Pwpfb/Ol/XYtO6MWUecdbx3fctbZW5mZp2LMp6c0v3dOf1IsFZTj39TzlpNu6nz+oru/NtJ/7nWMb3vZEtf162jeu55NRhNAQAAAAAAAEAXsQgLAAAAAAAAAF3EIiwAAAAAAAAAdBGLsAAAAAAAAADQRSzCAgAAAAAAAEAX+eXBnme+tirzpy+clfkDTz4u87fddpfM9+/a4e77iSeflHlyWlfW6+vTVe8aq/oc+nr06yvZMzL/9MmHZD4a+BXSBnpHZL5xbELmjVBXkqtVdBW7MKUrdu7du0vmnb6SzMuLunq6mVngVCzfMDos81JVn8NTp3WVwWJeX79STr8/05O6YqBX1dfMLDWgm3w61JVkE2m/QjVefvmCrpBdM11VMpPUbWHrVl2hsjZ7yd13taqrbDbrujrmhn17Zd6/Td+TzYRT2XxwXOaNur4fg8D/2Vp9tSzzxbkZmQ8M6GrbkenqtwuzejvnL+mKmSmnmurm3VtlbmaWzOhK39W67m8STqXL2++4Q+a1mq6OOjKor8X3fN97ZL7r4AGZm5mlnWr182VdJf3/8/4/creF9VFp6GdGpeo8o0PdDgv5vMwbLb19M7OVjn6ONZyq4ZGzqVJLH2uuqcdKVtXjg2hVV6reqIdoZmaWXp6S+TOHdXXwSk6PcVoJ3cdHupCtnZ3R91hnXFdePjatX29mltumnyO7tumqwmcffFDmK239Ptz9Bj1e3rtfj5dbQa/OnXZhZtYKdX8XOXnaud5YH08++rDMOy19D/f36v4mHej3u7qsx9lmZoeeeETmyVDve2a+LPPZ8orMFxbnZX7y5Cl9QK2kjEcG/alu0+kDT597RuZ9/bqfiPSQyJpN/YV8YUDmjVD3i6tNPd4zM1ta0OOuvHMP5zrOwYb63g5T+rp6VdWbzti0p6CfE2ZmuaJulxs3b9HH5MzZsI6cuUcn0GP20WE9b1uu6nne448fd3e9cVyPqYNUXX9DXb9+bESv1QwM7ZR5paHHB8VoVucdf42l3dD3Wa6o55Kh6X7woS8dkfnpC/p+zSZ0f/BP3n1QH09WXzszs0cffELmjz9xXuZz83pcHDkDuJ68HlQWsrqPTzhrAM2mP455ze27Ze4M92zXrlvcbb0YPgkLAAAAAAAAAF3EIiwAAAAAAAAAdBGLsAAAAAAAAADQRSzCAgAAAAAAAEAXsQgLAAAAAAAAAF3kl4x8nlxCv7RW05XnnryoK0se2KGruu4f3+ju+1U368pjp06elHkq3yPzbEpXX8zUdZXFLeO6FNqF2XMyP76sj8fMrL+tK2p2LjmVuJP6WEecqtpn5nQF09136Oq6B3P7ZX7o8JMyNzP73Jc/K/P5CV3JfGBIVxnsL/TJ/KbtugLgal1XWq326Iqq5+anZW5m1mzoinuprM57c06JZayLck1XNFwo637oH9+qK1ru2Kv7m7GJze6+n9mr75nlJV3tcmKvbs+53iGZt9r63Hr6dVXwor6NrBP5VR/7neqltUsXZH706adk3nYq9S4t6n5oxrkns4O6r05HfvXNIK0r7A5v0BXJB0d0P14o6iqbb37TfTJfuedOvf0x3c+1Qr/viFq6Imgqr6ujvuMf/yN3W1gfq864ob6q741+p/pzMafz6Rm/Knm9o+/jeee+bK1WZD7W0q9POnkwqcc+Z07qirhbirqdm5ltGOyVeTVckvkzMzWZZxLDMm84/eBsU1dqzuV0v7yUGpS5mdleZ4w4+8QDMt/W1FXMJwZ0H187+bjMx8Z1598zoa/FaugP9SPTfU7Y1v1XxvSYFetjYtO4zA8/9qDMVyZ1Ne9kQvdnKyv69WZm7bq+hz/zWf28r9Z0v5Iv6HFA0nTV7osXz8p8fGiTzFerer9mZlOTk/p7lssyz6X1sXaaun+avqj7zEJB3/Ohs51WfV7mZmYz8/peHd2sxybFfl2VvqdP94F9Gf2MarX1uLte020mn/E/99Xbr/u07bv0mkEU+M8WrI+NG3V/MDtXlvnkrB6XzC5dkvmxZ/xnz3336HWIA3v187u6qudtF2r6Pmu0dZteWtFteniD3m8ho+cdZmary/qYUs5cYuOGV8t8eUXfG8f/+2Myz/Toe+/mmydkvjR7XOZmZrMzCzJP9wzIfNsu3bdceEa3gbCjn1O5tB7jRKb7/ttv0c8KM7P779XrBgNZZ/6c0c+Eq8EnYQEAAAAAAACgi1iEBQAAAAAAAIAuYhEWAAAAAAAAALqIRVgAAAAAAAAA6CIWYQEAAAAAAACgi1iEBQAAAAAAAIAuSl3tC0u9fTJvZ5oyP7MyJ/NPP/VlmWcsdPe9c9uEzDe1WzI/e+oZmR/cqrdzcHirzKNyW+ajO3MyPzyl92tmdqwxLfNyqybzrT3jMn9q8ozMezZvlHm9o7efCWRsG0bG9BfMbOuOnTJvhPo6rdbqMo86kcwr88syzzb08dy56yaZz88v6m8ws9Wqbq9hQbe/RlOfA9bHudmKzIfzGZkf2DEq82ShIPP+/h5337fe/0aZt1q6H2o2dN5q6baWSOg8DJ222dA3RjvS95eZWcf0jT8wNCzzlNNPTF+8JPOw2C/zYJPeUKeh+6fVFd0XmJllikWZb9qxXeZDY7oNpJL6Z5DNuj6meks/LjP5rM4zaZmbmQUJfT0SHf1e5wv6mYP1U62u6i84Q5lMJi/zybmyzM/PLrj7nqrpe7+T1e1k68ig83rdpmeccxtM6ufneD4p80LS74vaFd2XB6b7zQ0pvY+eUB/TQq++FuWUvi/Lq3rMuqXfHxPNfe7TMh9Orsi8b5PuHwsl3Rcl2voaLTz6kN5vRveN+SE9PjQzq4X6erSccVon4LMbN5J9t90j8y0T22R+5NDDMp88e1TmtVX/WTxY0vPCnh7dDqcu6XlQfdW5X/r1dipL8zKfDXUf0W7pvtfMLJXWY77VJT2POH38tMzzed3fdBp6fFDMbpB5rzOeSOb8vrQc6X5iuaG/58nD52Q+t6j7/ZF+fV2rCd025ucnZd50+iczszv375N5aWBA5s5QCeuor6jHE+2gV+bBih7H9PToZ1I+5Y+D51Z0G720oMfa4306bzT1PTA7fVLmrYYef1hT9znFgr/s1nL6r7Mzur8bKet+c3xQ98ubxvW8d2FJj7lWlvSa1tiQ/z5sdtbZDuzX49mTp5dkvjSrr1OzqY81k9Edwq0H9XPwbW+6X+ZmZiPDerz05ON6/dL6zsv4ZncPVzCaAgAAAAAAAIAuYhEWAAAAAAAAALqIRVgAAAAAAAAA6CIWYQEAAAAAAACgi1iEBQAAAAAAAIAu8su0PU/HdJXFwKkw3Q505blHz+sKc7OzU+6+b9l3QOY7Nm+VeWGbrjrZ6dHV6oZSumLjbXldoS90Cm3u3LxDf8HM/u6Urmb7hUunZH6so6uI5jfq63q0oa/r2emnZb5veKfMR51KlGZmWzdPyPzMRV1ps1rRVcYvnNOV1Y8c0tVZL03pynOvfdN9Mh/rHZK5mdnZ8qzMnaLP1ki23W3h5XfyvK4Suas/I/OiU2UzSuoqlBb5FWhDpxprZPqeDBJ6H0FKd7sJZ9/thq4gagmnEmnTeb2ZtVq6oTedfTSdyp8J59wyGV3Zt5DXfWzb2U60RunbYp9T+XPTJpmXRkZlHnY6Mi8v6Nw6umpqNqWfgZmkbhdmZu1I7yPptIGU08awfrx7pjevKwEnTPdFFxZnZL6si8CamdnGbbtk/pZvfJvMX3f/18l8elKPMxp1fd8fefgLMm+bviezg5tlbmY2taDPu97Qz9xS0elbMvr+m23r92fZ6R97CrpycKKsxytmZoOBHuPknJH1qnPfLzn3fdG571sLunJ754yu3L6pd1gfkJklkvpgveda239EYh2027qjGN+yXea9wyMyP/aYHvs/+dDn3H3PTM3JvJLWeW2lovNaXebVZb2dVEaPJ1aW9f04NSljMzO7eNEZgzjXtbmqxwHJSL++VtH3auT0T02nf1qq+w+EVqD7zKTpc6vVdP/ubMZWF/W8aWFaV2dvJfUkeWzbXr0DM2u29c7Ly7p6eirDmOhGc/6SvjcGhvSztT+l3/OleWc7O0ruvnsG9fjq4qKeM1oqJ+NX7dJtNGjrvmW1qteuOh19v5aXnfmFmZWX9f2UCZzrlxyU+eKSPueE8+xeKOvrffq0vu/37dLPFjOzZKT7+OWZizI/e0K/PpXR45LSgO77dwz2y/yum/T6YdTy55hJZx87b9HrZkHPNndbL4ZPwgIAAAAAAABAF7EICwAAAAAAAABdxCIsAAAAAAAAAHQRi7AAAAAAAAAA0EUswgIAAAAAAABAFzk1XF+o0tCV4QKnwljbqXRYTeiKhvWGX/nx/JNflPnAicMy3zwyJvOxfl09rdjQ53DHxB6ZF5zKj1uTujqfmdk/2nibzBMpXb3yw2e+LPPVrK6sd3juCZl//jFdNT638/UyHxnW52xmVlvVbWBhRlcwLS8u62P6vH4/z13QVYjTzmWdm9EVAEcH/ErAs+WyzJtlfW7tUL/XWB+LdX2/vGOfrmaYdsq9hoHuh4I1fi7VCvW913bKRTfbul9pea9v6WP1qrC3O/p4mi1d+dbMrOJU9p1zygcvTOvKn2HTqRxc0/lSWVcIbtaqMq+t6iqhZma3jo/LfIOTZ3p0v7+6qqtyBk7byDrVOhOm3+eE+WXEOy39nnaaug1kU7ofx/qJIv2+59L6vWq1dHtYbuj3fPueg+6+f/CHfkTmN926T+aB8wzdMKzHSgOlUZk/fdedMn/qST3+mFp1ym2b2fDuLTLvLOmKvLOLui+yut5HbniDzAtlPS5ZuXBBH8+wfraYmaU367FGM5XVeV5vaymlxxnnqrrfXFzR5zB0Tl+j0j6/L7Kc7tdCpzq8mf+e4uV37tAXZD43MCTzLbv1GP+e+94k822bJtx9P/HAJ2R+5vDDMu/U9Pgj7Og21Yq8sZIe+4RV3Wb1Ez22uKDH/knT+8gmdGfaqDnjCWfOu+xUbffGH+k1xgAd5zqFgX5GRc7YpMd5duX7df80OK6rsycGNsm84sydzcyOHD8u82Kf3taGjbvdbWF9VJx5wYaBPpnffPN2mQd1PS9oRv6d3Aic+ZDzHGvol9vcsjNHmtTHVA8HZD7Qr4815xynmdlqNSfzbK8eN5Rrut88N6n3UXHGmn19el598ri+Fgu3+mOA1UX9PY3VusxH+vW+CwMlmSf1y23DhO4nJm77Opn3FfW1NjObPveIzFsd3QZu2nebu60XwydhAQAAAAAAAKCLWIQFAAAAAAAAgC5iERYAAAAAAAAAuohFWAAAAAAAAADoIhZhAQAAAAAAAKCLdFlUoVrXFSS9Ktnttq6elnQqTNcCfz04EepKjhcrunLsExdPyTyb0tXqhjO6YuNMZUnm23t15eDdo7o6t5nZhgFdhfhtm3SlzaWqrn77qYuPyfxEXb/+k6c/L/NgXlfRvX/itTI3M2ue09fj8ccfkvnkmWmZzy3qY12KdHXR0X5d3XxqVm9//25dIdrMLGjo9vrklN5WfYVKwDeSVEL3E1ucCotO12FOMVnrOP2WmVm7rSvNOgUnrdHSr287fWaj2dCvb+nXN53XL8zp6uJmZtMXdQXw5bLuSzstvY/qir5Xz50+L/ML5y/KPOlUAr75lv0yNzPbuVtXxU04z5BmoynzinMOS4tlmddW9TPQe3Kt9RPOVEK31yjSx4obTyqtxzKR0+nML+l7zNJZGb/l7d/o7vvWm2+RebOhK9NGLd1JJZK6GvbEtm06375B5nfeeavMP/WJz8nczOzUsWMy37xB76OwUx/T8dPnZJ4t6srd4cUFmXeqKzJfyvvPhGjjFpmnevU5eLf3fEVXM55a0W3pmQu6snrftK5AvPOu1+sdm9mmwWGZJ0J9sAmn4jrWx+HHvyTzXL9u/8MbN8q8p0+3g50Hbnf3vXWjrkj9yIYRmT/2xU/JfENe90PVpm6Dy06l7ciZ0uoe9v/wBomhvieTToH2lDOWyThz3o7p/TpHY4lAXyMzs8gZT3QCvbV0Rl+Rvp5e/fq03n49ofuCpQXdly7U9fPJzKzYp6vMT0/PyLw0uNndFtZHX69uV51Q3xuXlvX9nXNen+7oMbuZWRTqNtqb1+sH4Zxeh7i0qscl52f1uc3pZRHL5vQM4FX7hvQ3mFknrY+1NLJd5rmCM6CY1HPAnXtLevt9eu2q7kxu/+GBI3q/Zjbep6/T/l16rHTfPfp5NFvXfddqVbeBgQHdZtqh7osSoZ7bmpn1JnWfveiM4Vem9Jpj7+43ufv4/x/Hi74CAAAAAAAAAPCSsQgLAAAAAAAAAF3EIiwAAAAAAAAAdBGLsAAAAAAAAADQRSzCAgAAAAAAAEAX6RJgQuiUE286FSQbLV21LRXo17fXWA+OnH23nKrh9YZTxbquj2khqfddflJXz/v6g3fLPFfwa3BOzs3JfKQ/J/N/euDNMi+m0jL/b1/+e5n/75WnZF6Z1NXtlqZPyNzMrLDUI/PctD63bE2/D729+nrX+nR1u2//pjfIvJTUFf0SLa++qNlMRl+/IKUrjwZe5VSsiy1O2ylEui/oRLpNpZw+pd3QVXfNzOoNvY+W03e1nLbTcfrMsKMrUdZWdT80P6erxs5PTcnczKy5WtX7ruvznp3V+zh+3Kkgeva8zDdv0pXNv/1bv0XmO3boe9vMbGVFX4/J83rfQU73W8vLuqzpylJZ7zil+/dUWvcdiZSu1mpmloh0Gwi8x6BThRjrJ53Tz5J60xmXtHX+mte9TuZ3vuZOd9+rbadKsFMN2yLdsIJQt6uoo/sJr+8aG9T363d8m76/zczOO/frM6dOynxmdl7m/UO6um67rscfA4O6Angl0uc8v7rGvTevv5aJdF7N6Peh6lQNr9R1Bd9KRbelycWLMr9wSffjZmZbtu+QeTr0OiO/Sjtefss1/eyumfN8q+o2NeCMiRprjIFzpVGZJwZ0vuT0NxtGdcXwuw8clPnsQlnmlYq+j/IJPQ40M3OmfxaZ84wO9DkknfGbmb5+3vOg5fSxS8v63MzMlitOG6jpOW+lpV8/t6DbhnOoVm3qc24F+npnC316Q2bW7OjliPlFXZG81XEOCusmndbv+/zspMzLS/pZksvqsfPmvjWePYEej+0c3STzTFPfGy3T4/zeom7r6ZSzPlXV/e/CrD+eSPbqsUlz5azMw0CvHxX69X22c7gg86G+YZk/c/6SzGdqzvjTzAoDYzKfXNHjt4t1Pe4aGszLfHle910Dffr9P3XsUZk3+vT2zcxuvfedMh8LnLH9oj63q8EnYQEAAAAAAACgi1iEBQAAAAAAAIAuYhEWAAAAAAAAALqIRVgAAAAAAAAA6CIWYQEAAAAAAACgi3Q5QiF0qr22215FSGc7Hacab8qvXtnp6GqRXu4Uo7TIqZRedc7h9JKuMv6ppx+Web2tK0uamd29cafMOw2nIvoRXVnvG8fvlnl0UF/XD335gzJ/tKmr5V5YOixzM7OtnUGZb9rYL/OJoq7Et7mh37fVtPP6UFekGx3QFQAPHzsqczOz6qquYpdO60ZTqVGB80ayNa/fj2ZTV9NMN3SF7Cij21rb6Z/MzDptXU3TKSpsCacjWq2tyHzJqbC4MDMt8+XFBZm3nWrJZmazU3pbJ0+ekvmFC7ra9sqKro7Z21uS+Tu+8e0yv+3ALpmfOPqIzM3Mqg2nDSSKMi87FYK9N65e09U6hzdtk3k70v1Z26lybGaWyevKnF7F1tqqPiasH2c4YeWqvr937t8r83/y3d8l81Kp5O47bOl7IHCqUkdOWw+cauVup+bELed4Egn/5/zbtun7aceOHTI/eeoZmX/ik/8g830375f5wb3fLvPZi+dk/vThQzI3Mzt9UVfuXpjV/WyyoCv4JtP6OjUbTt/V0W9ELqcrOxeKfiXgyOmnvDyxRqV5vPxqVf0sbjltpO08Y6JQz0XqNX9ec+yEHmt/6u8/JvOFxWWZP1LR57BY1+ewZULPpy4tzsp8dY1q3mmnEntSx2bO8z5s6uvk9Y2rdT1OqzvjzLDqz7Wjhr5OYUKfRCdy+mWnv06m9HZSBT3mSgT69UFS939mZi2nv6k77bXRZm52o2m3dBvN5Jy50IoeK4306rn9yKheazAzqzv3WaOl99FJ6bbYXxqX+UTBWbdY1mspBefem5p3BlFmlnD64GNP63nYHbdulPnMBb12VSr1yvy2m0b064f1sT5zZk7mZmbHT+rrMT6ur+uJk/rcdk0clHl221aZLyzoMVdvTj8T+ra9VuZmZrPnjst8ZO+d+pgG9bjravBJWAAAAAAAAADoIhZhAQAAAAAAAKCLWIQFAAAAAAAAgC5iERYAAAAAAAAAuohFWAAAAAAAAADootTVvtCrrutV0fWq4nqVVdttv/KjV/HXzb0Kj5aReSvUVfVaWX15nlnRVdjmH9ZVes3MZrfranVvv/1emfcmnWprU7oC532lfTI/XNgs80fbukrpuaRfcXK5pqu3T83ryt3187oyfaam97F1WFfu+/QnPy7zdvSozLds3CRzM7NNCV0R8UxZX48pp4Ip1semYEnmy8u6/ygWyzov6LZmTp9iZtZyqt+ururqm+UlXTl7cWFBb6dclnllXt93s+fPy/zYCV1F3Mzs7CXddzVq+vp12k7V7pauqh529P3y5JO62uSMczzZlN8P9fQWZD63rN+H2SXdP9WqOl9d1X3BN+7U1daTumiqRU3/mdbu6OtXW12Veb1KP3SjWXHaTyKnxxlvfNvXy3zDRl3htulU+zXzx1fXi1e/1xsHemOxMNTt3Mys09E3jnduExPbZP5PvuNbZZ7N6Gd9Ia/fny1b9Lhhy/btMjcz+4u//F8yv3hU93fVRd0nFIq6T+vU9TOn3dRto6enR+aDg35V6cicDsz0exc4Y3isjyDyHkC6rdVrFZlXK3psNXXxrLvvxx9+UOaNuh77J5x5TdPZ/qnzenwwuaTvi6pzvwShX5Hcb+c673Sco3We6WbOnDdytu+8Pm15Z/tmkS7EblHCmeIndd8YJPW+E1m9g2xO91uttndN9X7NzKKM7pfLznhsflmPr7F+Sr26nQQZ3U7qLd3nJJ15R0+x6O57OKfbVj6pt3XsrJ4vLFZmZL5rr15jyfbotj5zrizzdNZ73pptHCnJvDeh54wXpidlvm3jmMxLJb3vOWeO2eno9zMf+P3pSCkn854e3QZ2bNFjlt6i7mdrzlyotqzP4e79u2Vervlj6IVFvV5X2nRB5oWxA+62XgyfhAUAAAAAAACALmIRFgAAAAAAAAC6iEVYAAAAAAAAAOgiFmEBAAAAAAAAoItYhAUAAAAAAACALnJKJ76QV/02cCrZZtK6Ul27o6u6rlW70uNV1/U2lnIqQkbeN2R1tcZMQr++WvMrWD9w7imZz7V0Nezbt+6V+YHxCZlna7pC3xu23Snzzjl9Dgv1WZmbmWV79PWbv6groS6u6CqsPQl9XUedKtFRXldEbC3q7QRpp1SomUWTuiJi8+RFnRf8ap54+fWndMXElYruCypnz8h8tKDbVCPpV6AtL+jqi7NTuu0szc/p7UzqyotT587JfPr8eZmvLpb1dpb0/WhmtlTRFZNXVnTftbSkK8DXG7oKccepyHzo0EmZe8+Pvn7/fdi2aVjmQ0M6n5zVVXTLzvVLOv374IDefvtufe127dN9uJmZpfSjd2ZK978PfP5LMn/7W17v7wNdVa3re+M1b3qLzG+56w6Zt9r6noncatv+mCWKdJ5w7jN3+852vHHgtb7ezCyZ1M9pb1vtlu77e3t1X5Fw9t12rmujpd+HXF9J5mZmW7Zukvnho3q8V6/q8cdSWVc/TujhsrVr+lrcdPM2mZcG+vWGzCyK9LMzCPR1ajnXCesjcuZUrboeB9Qqug2eO6Of0Y8+/Hl333OTeszSbunxgQX6uZfO6bF8Kqcraq/WdfsPO/qezzrV1s3MwtDpS50+NumcQ2B638mUPrfegq4i3mzr99M5NTMzS2f1tgJn3+bMhTum+4JkWu88k8rKvFHWc7+Ec+3MzKKUfo+itP6eRug/H7E+hvp1u1pt6mfGLTv0mHrzoG5XYxm//fT2D8p8eu6SzPsLuv309OhjnZk8JfNNm7fIvJ7U879Mv99uG0k9pmxn9fecPjUt8+GCvu9LN+trtLyg57BDI1tlPt3x34fHDp+Q+cYtus/es1u3gUS67GxnVObZULe9M+fOyPzc1FGZm5kV+2+S+c333CzzqKn7u6vBJ2EBAAAAAAAAoItYhAUAAAAAAACALmIRFgAAAAAAAAC6iEVYAAAAAAAAAOgiFmEBAAAAAAAAoItYhAUAAAAAAACALkpd7QvDMJR5EAQyb7fbMm+2mjJPrHEk3r6v9ZgSHZ3ngrTefjKSeTZqyTyVzcjczCyR1l97au6MzI9NPiPz27bslPkb9t8q8zt23y7zvdv2ybwZVmVuZmbJpIzP3Lwk8wunLsp819CIzO/do88tm9WN47OPnZL5x/7ib2RuZjZ16JjM52r65xGdgT53W3j5lVv63itEut2uLi7LvKWbsvWMjLv7DspzMm9fOCfzqcNPyXz2zBmZ5zP6oA6MD8k8u2eXzB98Sm/fzOypBx6TeXlZX792qPvxjun3IXIeKYnQ+Xmf7sJtZr6sv2BmU/PTMg9M9++h6X48afp6J51D/cw//IPM77zrLpln80W9ITM7dU63mS998SGZf/gvdZ/2m+/7D+4+0F17998k82985ztlni3kZR62nXHMGvsOI92mvXGXNyZKOs90b2wVOfv1tuPlax1Tp9NxvkPvO+zoc7aEvpEj57MHkXfFA/+zCjfferPM2x09zn3kyUMyn5rSz5bRkh4rTWzZKvP733y/zHt7/b6o3qjJvOP0/W6njXXRaepncSeh36fFed3WpmanZD43p8fxZmb12qLed0Pfwwlnohc593CtWpF5GOjtpFJZfTwp/x5OJPT8r+30y6FzX6SSejv5vh6ZF/t69fE4c+RUVm/fzCxf1Pd3KqufOf2Dul9phrotVeu6j8gm9Lw2jHRb6jjX1MwsKOjzazrXu97W1wnrZ7BUkvmGtH6vtvTp97zHaQtPXLrk7ntHJifzc5O6/5pb0m3d0nrMMjgwIPN2pPsobz1otbmq92tm9aq+z5ZX9Pxsfk5f15FxfUxTF/Qxbd23Reah049HNX90mmjrfVSrug/u7x2VeTpwngltff1ufv19Mn/64cdl/qotfl+UK+jzm3HmbeHZM/qYvuGgu4/L+CQsAAAAAAAAAHQRi7AAAAAAAAAA0EUswgIAAAAAAABAF7EICwAAAAAAAABdxCIsAAAAAAAAAHSRLjF5DSKnYm3HqXYZRrraWrvpVWL1K+ymUk5l345XbVgfa+BVe23pYw291zuVg83M2pFX8VK/Ba2gLvPHLxyV+eTMBZnvGtok8zv26MrOfX1+Fd0g0ue9J9Mv87tu3ybzQkZXzysN6n3PzOlqrh/+4Edk/qVHdAV4M7OEU/W5nSnIPAipwHkj+dBff1zm//ib3iTzfEbfX5Vzp2SeWJh1910q6jaS7NU/y8rtGJP5Ukm381xOV/cslIZk/oVDx2T+6Qe/KHMzs7myriwZOdWGQ68iuVshu+G83qmy6VQkd/tkM0smdAXkhPnVg/VO9L69auvHT+oqq//v9/+xzG+98xF310mn3//Yx/9O5pfOn3W3hfXx9d/0rTIfGdDP3GZFP0uSCT2OCZz2udbXvDyR0H1Ut18frTEm8r7m5YlAXyenCLw5Q01LJPWxJp2+qOOMGczMRkbGZf7mr3+bzG+7426ZNxq63yz1l2Sey+pnRdKp0N5s6u2bmXXa3lhdvw9J5/phfUSBd7/o9lyr60rbK6t6bJAJ/Pe7nXCmkAmn7/L6Fef1SWf7iYRu50FKvz5ycjOzjjPWSGbzMs841dMTKT2vCZ35TtDXI/P+rB7f5HM6NzMrl8t6H04baLZ1ZfjlVV1Vvd3RnWngjK+TTqV6S/p9aSavvyeK9DlUnPaK9VPSt4xVFnW7SmT0XKg3r+c8Yxl/PFFbmZd52mmjndC5B6aXZV6v6/u10dD7taRew0ln/HsgqOpjvXRBt/WtW/X4o7eg75kzx/U84pbb98p8cXlJ5tUlf73u699yn8yfPHpI5uOj+py//MglmU9PLcp826YZmb/mDa+X+eLMaZmbmaUzes0p2dLPzmTU627rxTCaAgAAAAAAAIAuYhEWAAAAAAAAALqIRVgAAAAAAAAA6CIWYQEAAAAAAACgi1iEBQAAAAAAAIAu8ktGPk+zpauhtZ0qi2Gkc68inTlVuM3MvAK73ndEzleilFdGV+cdJ2939PYrHe/czCypq0umWrrSZtKpSNoK9DFN1nQVu/lzOn/04nGZ+/WYzRoNXd15JDMo82981RtlPpjRleROPqSr1T32xGMyf/zpp2TuVXQ3M4t6dIXRTs6pwprh5xQ3ktmaboNhr26D2aRTRbytq3WuVHXlRTOzZFrfw5l+XdV1Q4+ukj48prcTRU5lzAVdkfHj//sRmU+X/aqxkVMtN3Lu/NCpvOzV9wyckuSRedU0vfvLrwSciHRlZAucx9m1VmFP6GrGziPQHvjCwzJ/4rDun8zMBocHZD43NyvzYu6lV99Ed+zavU/mnbZTbTuhn/VeBeu1JJwq455k0qno7WzHvzf068PQGUM5VbXjY9LbSnmVzL1jcqpnu4MZZ3jgvQ/ppD9MDr33zqnqvnHDBr0d5/p5B+uNic2c8WS41lBf96eR0zcnnEr2WCfePezcX8tVPT5IO68P2rpNmZmFLf2sTKT1tjqBfoh2nHFGKlOQeS7fL/O20/dapMeNZmaptD4H797L5XQJ+GxJV0/PFnUF+NER3RckEvp+zKT9e7h/YEzmgTOPbDb19Wg2nHm+6X684bw+SutzCCO/qnq75fTvKZ236g13W1gfpUHdpkdKevza7zyvCs79PdLnjP3NbMUZa0yMjch8rjwl80ZOt7fNA3p9Z2xUzyXnl3VftH2zP5a/dGFZ5kO9+jr19ejrtLykj2lyWd8z9Y7uJ+rOs+KZMxdlbma2acd2mX/d3Xq8vLqi16jOX9T7aM/pPuTSw3q+1ff6IZnXq3q/ZmaDozv0F5y54eqUvt5XgxUmAAAAAAAAAOgiFmEBAAAAAAAAoItYhAUAAAAAAACALmIRFgAAAAAAAAC6iEVYAAAAAAAAAOiiIPLK4AIAAAAAAAAAvmJ8EhYAAAAAAAAAuohFWAAAAAAAAADoIhZhAQAAAAAAAKCLWIQFAAAAAAAAgC5iERYAAAAAAAAAuohFWAAAAAAAAADoIhZhAQAAAAAAAKCLWIQFAAAAAAAAgC5iERYAAAAAAAAAuuj/B5/6hEWz64wrAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Predictions and Classification Report\n", + "# Classification report share precision, recall and F1-score for each class\n", + "y_pred = np.argmax(model.predict(X_test), axis=1)\n", + "y_true = y_test.flatten()\n", + "\n", + "print(\"\\nClassification Report:\")\n", + "print(classification_report(y_true, y_pred, target_names=labels))\n", + "\n", + "# Confusion Matrix\n", + "# Visualizes the model's performance across classes\n", + "conf_matrix = confusion_matrix(y_true, y_pred)\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, display_labels=labels)\n", + "\n", + "plt.figure(figsize=(10, 10))\n", + "disp.plot(cmap=plt.cm.Blues, xticks_rotation='vertical')\n", + "plt.title(\"Confusion Matrix\")\n", + "plt.show()\n", + "\n", + "# Visualization: Predictions\n", + "# Correct predictions are marked in blue, incorrect ones in red.\n", + "num_rows, num_cols = 4, 5\n", + "plt.figure(figsize=(15, 10))\n", + "\n", + "for i in range(num_rows * num_cols):\n", + " plt.subplot(num_rows, num_cols, i + 1)\n", + " plt.imshow(X_test[i])\n", + " true_label = labels[y_true[i]]\n", + " pred_label = labels[y_pred[i]]\n", + " color = 'blue' if true_label == pred_label else 'red'\n", + " plt.title(f\"T: {true_label}\\nP: {pred_label}\", color=color, fontsize=10)\n", + " plt.axis('off')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b7fa52dd-4c31-4136-9b66-c0bad9a013ec", + "metadata": {}, + "source": [ + "**Possible Improvements to the Model**\n", + "\n", + "There are several possibilities that could be explored for further enhancement of the model shared here.\n", + "\n", + "- The ROC-AUC metric could be applied, to help in understanding how well the model distinguishes the classes (beyond precision and recall).\n", + "\n", + "- Fine-tuning further DenseNet121: selectively unfreesing the top layers of the pre-trained model and fine-tune them on CIFAR-10. This should allow the model to adapt its high level features to the dataset at the same time it leverages pre-trained lower level features.\n", + "\n", + "- Introduce more diversity within the augmentations (for example, roation, zoom or cutout)\\\n", + "\n", + "- Applying label smoothing to soften the one-hot encoded labels may help prevent overfitting by reducing the confidence of the level's predictions\n", + "\n", + "- Dense layers or convolutional filters (L2 regularization)\n", + "\n", + "- Upscaling the resolution of CIFAR-10 images" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "3e3b0dad-6cbd-4432-9864-148144383daf", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/anaconda3/lib/python3.12/site-packages/keras/src/saving/saving_lib.py:757: UserWarning: Skipping variable loading for optimizer 'rmsprop', because it has 366 variables whereas the saved optimizer has 730 variables. \n", + " saveable.load_own_variables(weights_store.get(inner_path))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1s/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGrCAYAAAAvhYsOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArtklEQVR4nO3debTcdX3/8dd39pm7LyELIYvBbLLVWghQTBAawLJoyeG07GFVFMqqRws2GFmU4ClUKbiEGJqDpUlFm7KIEqo1AeHoEYEqa9iSXJLc3P3O+v38/qD5/BhuSD5vSEzgPB/neDxM3ved76yvmcmd10TOOScAACQldvcBAAD2HIQCAMAjFAAAHqEAAPAIBQCARygAADxCAQDgEQoAAI9QAAB4hAJ2mSiKgv73yCOP7O5D3aa3HmMymVRbW5sOPPBAXXjhhXr00Ud39+EBu0REzQV2lbc/cC5cuFCrVq3Sww8/XHf6zJkz1dzc/Kc8tCBRFGnevHm64oor5JxTX1+fnnrqKS1dulRPPvmkLrnkEt1yyy27+zCBnSq1uw8AH1yzZs2q++9Ro0YpkUiMOP3thoaGVCgUduWhBRs9enTd8R5zzDG69NJLdcEFF+jWW2/V9OnT9dnPfvZPekx70uWDDx7ePsJuNWfOHO233376xS9+ocMOO0yFQkHnnHOOpDefqS9YsGDEz0yaNElnn3123WkbNmzQhRdeqPHjxyuTyWjy5Mm69tprVa1Wd/oxJ5NJfetb31JnZ6duuummuj/r6+vTlVdeqcmTJyuTyWjvvffWpZdeqsHBwbo555xuu+02HXTQQcrn82pra9O8efP04osv1s1t7/IBdgVCAbvd+vXrdfrpp+vUU0/Vfffdp4suusj08xs2bNDBBx+sBx98UF/5yld0//3369xzz9UNN9yg888/v2727LPPVhRFWrt27Xs65nw+r6OPPlovvfSSXnvtNUlvPoOfPXu2fvCDH+iSSy7R/fffry9+8YtasmSJTjzxRL31ndoLL7xQl156qY4++mjde++9uu222/T000/rsMMOU1dXV93f9V4vH8CCt4+w23V3d+vf//3f9YlPfOJd/fyCBQu0ZcsWPf3005owYYIk6aijjlI+n9eVV16pq666SjNnzpT05rP8ZDKpKIre83FPnDhRkrRu3TqNHz9et956q5588kk99thj+tjHPuaPY++999a8efP0wAMP6LjjjtOjjz6q7373u7r55pt1+eWX+31HHHGEpk6dqm9+85v6+te/7k9/r5cPYMErBex2bW1t7+kBb+XKlTryyCM1btw4VatV/7/jjjtOkvTf//3ffvb73/++qtWqf0B/L97+OxorV67Ufvvtp4MOOqjuOI455pi637JauXKloijS6aefXjc3ZswYHXjggSN+G+u9Xj6ABa8UsNuNHTv2Pf18V1eX/vM//1PpdHqbf75p06b3tP+dvPzyy5KkcePG+eN4/vnnd3gcXV1dcs5p9OjR25z70Ic+VPff7/XyASwIBex27/RWTjabValUGnH65s2b6/67s7NTBxxwgK677rpt7tn6oL0zDQ8P62c/+5mmTJmi8ePH++PI5/NavHjxNn+ms7PT/38URfrlL3+pbDY7Yu7tp+2Mt7qAUIQC9liTJk3Sk08+WXfaww8/rIGBgbrTjj/+eN13332aMmWK2tradvlx1Wo1ff7zn9fmzZt1ww031B3H9ddfr46ODk2ePPkdf/7444/XjTfeqNdff12nnHLKLj9ewIJQwB7rjDPO0DXXXKOvfOUrmj17tp555hl961vfUktLS93cV7/6VT300EM67LDDdMkll2jatGkqFotau3at7rvvPt1+++3+2fy5556rH/zgB3rhhReC/l2hq6tLjz76qJxz6u/v9x9e+93vfqfLLrus7rebLr30Uq1YsUIf//jHddlll+mAAw5QHMd65ZVX9NOf/lRXXHGFDjnkEB1++OG64IILNH/+fD3xxBP6+Mc/roaGBq1fv17/8z//o/333/9P/tkHYCtCAXusq666Sn19fVqyZIkWLVqkgw8+WPfcc49OOumkurmxY8fqiSee0MKFC3XTTTfptddeU1NTkyZPnqxjjz227tVDrVZTrVYb8Y/E72T58uVavny5EomEGhsbNXHiRB166KG6/fbbR3wIr6GhQb/85S9144036jvf+Y5eeukl5fN5TZgwQUcffbQmTZrkZ++44w7NmjVLd9xxh2677TbFcaxx48bp8MMP18EHH/zuLzTgPaLmAgDg8SupAACPUAAAeIQCAMAjFAAAHqEAAPAIhT3YkiVL6r79K5VKafz48Zo/f75ef/31P8kxvL2m+pFHHnlX35a2evVqLViwQD09PTv1+KQ3m0/f+uueVu/nb1g755xzdOyxx444/Z//+Z81ffp0ZbNZXyNeqVSCdj777LM6+eST1dbWpkKhoEMOOUQ/+clPtjm7bNky/dmf/ZlyuZw6Ozt16qmn6tVXX62b2bJli1pbW3Xvvfeazx92A4c91p133ukkuTvvvNOtWbPGPfzww27BggUum826yZMnu4GBgV1+DBMnTnRnnXWW/+/e3l63Zs0a19vba9pz0003OUnupZde2rkH6Jw766yz3MSJE9/1z0ty8+bNc2vWrHGrV692DzzwgFu0aJE74IADnCR3ySWX7LyD3Yl+85vfuEQi4R5//PG607/2ta+5KIrcl770Jbdq1Sr3jW98w2UyGXf++efvcOdLL73k2tvb3Uc+8hH3wx/+0K1cudL99V//tYuiyC1fvrxu9tZbb3WS3HnnneceeOAB973vfc+NHTvWTZw40XV3d9fNLliwwO27776uVCq99zOOXYpQ2INtDYW33+mvueYaJ8n967/+6zv+7ODg4E45hreHwru1p4fC5z73uRGnV6tVd8455zhJ7rbbbnsPR/ju7Og6POWUU9ysWbPqTtu0aZPL5XLuggsuqDv9uuuuc1EUuaeffnq7Oy+88EKXy+Xca6+95k+rVqtuxowZbp999nG1Ws0551yxWHQtLS3uhBNOqPv51atXO0nuy1/+ct3pGzZscKlUyi1btmy7fz92P94+eh/a+knarS2dZ599thobG/X73/9ec+fOVVNTk4466ihJUrlc1te+9jX/VsKoUaM0f/58bdy4sW5npVLRF77wBY0ZM0aFQkF/+Zd/qV//+tcj/u53evvoscce0wknnKCOjg7lcjlNmTJFl156qaQ3v+/gqquukiRNnjzZv1Xz1h3/9m//pkMPPVQNDQ1qbGzUMccco9/+9rcj/v4lS5Zo2rRpymazmjFjhpYuXfquLsMQe/I3rHV1delHP/qRzjjjjLrTH3jgARWLRc2fP7/u9Pnz58s5t8O3cH71q1/pwAMP1N577113ORx33HF69dVX/W3iqaeeUm9vrz75yU/W/fyhhx6q9vZ2rVixou700aNH66/+6q90++23b/fvx+5HKLwPPf/885Le/M7jrcrlsk488UR94hOf0I9//GNde+21iuNYJ510km688Uadeuqp+q//+i/deOONeuihhzRnzhwNDw/7nz///PO1aNEinXnmmfrxj3+sk08+WX/zN3+jLVu27PB4HnzwQR1xxBF65ZVX9M1vflP333+/rr76av8NYuedd54uvvhiSdJ//Md/aM2aNVqzZo0++tGPSpKuv/56/d3f/Z1mzpype+65R3fddZf6+/t1xBFH6JlnnvF/z5IlSzR//nzNmDFDK1as0NVXX62FCxfq4YcfHnFMH/RvWPvpT3+qSqWiI488su70p556SpK0//77150+duxYdXZ2+j9/J+VyebvNrVsLCsvlct3pb5997rnnVCwW606fM2eOfvWrX+2Sf1fCTrSbX6lgO7a+ffToo4+6SqXi+vv73cqVK92oUaNcU1OT27Bhg3PuzbdPJLnFixfX/fzdd9/tJLkVK1bUnf7444/XvSXyv//7v06Su+yyy+rmli1b5iTVvX20atUqJ8mtWrXKnzZlyhQ3ZcoUNzw8/I7n5Z3ePnrllVdcKpVyF198cd3p/f39bsyYMe6UU05xzjlXq9XcuHHj3Ec/+lEXx7GfW7t2rUun0yPePjrnnHNcMpl0a9eufcdj2krv8PbRVl/84hedJPfYY48555y74YYbtvle/vLly50kd9999znnnFuzZo2T5G6++ea6uVdffdXl83n3hS98wZ82e/ZsJ8n9/Oc/3+HxOufcZz/7WZfP5+suC+ecO//88102m93mz0ydOtXNnTt3u3s/9alPudbWVtff3193+hFHHOEkueuvv94559zmzZtdIpFw5557bt3c888/7yQ5SW7dunV1f/bQQw85Se7+++8POo/YPXil8D4wa9YspdNpNTU16fjjj9eYMWN0//33j/iSlpNPPrnuv1euXKnW1ladcMIJdd/wddBBB2nMmDH+7ZtVq1ZJkk477bS6nz/llFOUSm2/M/HZZ5/VCy+8oHPPPVe5XM583h588EFVq1WdeeaZdceYy+U0e/Zsf4x//OMftW7dOp166ql13y8wceJEHXbYYSP2ftC/YW3dunUaNWrUNr9rYXvfv7Cj72b4/Oc/r97eXp155pl68cUX1dXVpWuuuUarV6+WJCUSbz5ktLe367TTTtPSpUt1xx13qLu7W08++aROO+00JZPJutmt9tprL0n6k/3mHN4dWlLfB5YuXaoZM2YolUpp9OjR2/wmrkKhoObm5rrTurq61NPTo0wms829W78JbOuX1owZM6buz1OplDo6OrZ7bFv/bWJrNbXV1rdQ/uIv/mKbf771geWdjnHrae/1baLt2RO/YW14eHibIdzR0aFisaihoSEVCoW6P+vu7taf//mfb3fvUUcdpTvvvFNXXHGFpkyZIkmaOXOmFi5cqC9/+ct1/9bwL//yL3LO6aKLLtJnPvMZJRIJnXHGGRo9erQefPDBEbedrcf71rctsechFN4HZsyY4b8I/p1s6xlgZ2enOjo69MADD2zzZ5qamiTJ33k3bNhQd6evVqsjvuXs7bb+u8bW99uttn4b2fLly7f7rP6tx/h22zptZ9lTv2Gts7NTv/nNb0acvvXfEn7/+9/rkEMO8adv2LBBmzZt0n777bfD3WeddZZOO+00Pffcc0qn09p33311ww03KIoiHXHEEX6uoaFBd911l2699Va9+uqrGjdunDo7OzV9+nQddthhI15ldnd3+2PHnotQ+AA7/vjj9cMf/lC1Wq3uAeLt5syZI+nNDyK99ZnkPffco2q1ut2/Y+rUqZoyZYoWL16syy+/fJsPftL/fwB8+7PEY445RqlUSi+88MKIt7/eatq0aRo7dqzuvvtuXX755f4B9OWXX9bq1at3yVdu7snfsDZ9+nTdfffd6u3trfvSoWOPPVa5XE5Lliypu863fhDyU5/6VND+VCqlGTNmSJJ6e3v1ne98RyeddNI2g7utrc1/Z8VPfvIT/fGPf9TXv/71EXNbf+Nq5syZwecTf3qEwgfY3/7t32rZsmX65Cc/qb//+7/XwQcfrHQ6rddee02rVq3SSSedpE9/+tOaMWOGTj/9dP3TP/2T0um0jj76aD311FNatGjRiLektuXb3/62TjjhBM2aNUuXXXaZJkyYoFdeeUUPPvigli1bJun/P4O95ZZbdNZZZymdTmvatGmaNGmSvvrVr+of/uEf9OKLL/ovxenq6tKvf/1rNTQ06Nprr1UikdDChQt13nnn6dOf/rTOP/989fT0aMGCBdt8S+mD/g1rc+bMkXNOjz32mObOnetPb29v19VXX61rrrlG7e3tmjt3rh5//HEtWLBA5513Xt0D8tKlS3XOOedo8eLFOvPMMyVJb7zxhm6++WYdfvjhampq0h/+8Ad94xvfUCKR0Le//e26Y1ixYoXWrVunGTNmqFgs6pFHHtEtt9yiz3zmMyO+CEmSHn30UXV0dIz4zSjsYXbrP3Nju97pw2tvd9ZZZ7mGhoZt/lmlUnGLFi1yBx54oMvlcq6xsdFNnz7dXXjhhe65557zc6VSyV1xxRVur732crlczs2aNcutWbNmxIfXtvXbR869+Zs2xx13nGtpaXHZbNZNmTJlxG8zfelLX3Ljxo1ziURixI57773XHXnkka65udlls1k3ceJEN2/ePPezn/2sbsf3vvc99+EPf9hlMhk3depUt3jx4m1+eG3rb2SFfFhO//fbMpJcIpFwzc3Nbv/993cXXHCBW7NmzTZ/ZmBgwF199dVu2rRpLpPJuJaWFrf//vu7yy67zP9W2FaLFy92hxxyiGtoaHD5fN5NmTLFnXnmme6JJ57wM7Nnz3Yf+chHdnisW9VqNTdp0iR30UUXbfPPb7nlFjd16lSXyWTchAkT3D/+4z+6crlcN/PWT8xvtXnzZjd37lw3atQol06n3YQJE9zFF1/sNm7cOOLv+NGPfuQOOuggf74+9rGPue9///sjfiPKOefiOHYTJ04c8Vtm2PPwzWvA+9TNN9+s6667Tq+//rry+fzuPpzt+vnPf665c+fq6aef1vTp03f34WA7CAXgfapYLGrGjBn63Oc+pyuvvHJ3H852HXnkkdp333313e9+d3cfCnaAzykA71O5XE533XXXO/7j/p5iy5Ytmj17tq677rrdfSgIwCsFAIDHKwUAgEcoAAA8QgEA4AV/eO2L1//QuDr8nyreXpy1M+ct1QHW+V25O45j027rvwzVZDifhutSkpK2i8UkduGXy+BQj2n3a6+/YJrv6lobPLt+w/Om3aXBgeDZ4b7tV5G8XS7fsuOh/9PRNvKDgdszMLDjqvWtmjttu5M526/dDg6FXy6plO1Gm0oZjiVhu//0bA6vjKlVS6bdr/z25R3O8EoBAOARCgAAj1AAAHiEAgDAIxQAAB6hAADwCAUAgEcoAAA8QgEA4BEKAACPUAAAeMHdR9YuHkWGvg9jb09cCz+WKLLlnq0BZdf1EyWSwVeNJHs/UVQJ70ypVmu23blC8KwzHrczPI/JZRtMu1ua2k3zfX3hPT+tzbaen0FtDJ7N1JKm3dnG5uDZcrVs2l2uDgXP9g+tN+3Ox+HHLUnpRMYwbbvnOxd+n6iUw3usJKnUFz5f2wVfh8MrBQCARygAADxCAQDgEQoAAI9QAAB4hAIAwCMUAAAeoQAA8AgFAIBHKAAAvOAuhULG9lF6S31BlLTttlQ6xLHt4+uS4VgiW/2DqefCUhMiKZWwzZcHeoNnhweLpt1RojN4tlIMr0WQpMaWvYJnXcJ2uxozerxpvlAIr/N4PmW7foZKm4NnW8eOM+0eHu4Pnu3v6TbtzjWFXyZxqmra3T9gPJZMY/BspVYx7S4XB4Nn45qtKiSZS4fP5m11OCF4pQAA8AgFAIBHKAAAPEIBAOARCgAAj1AAAHiEAgDAIxQAAB6hAADwCAUAgEcoAAC84OKMXKJkWhzHcfBsVLP1EyVThk4bW/2Noij8WJxs3UfOhc/bmnKkuBzexSJJ0eCW4NlCKmPanXHhXUkJY3VLNhneURNF4bdBSarJ1n9Ty4bvzxm7j3LpfPBsb8960+5KKfz6SWXCe3gkKZ0Nv8OVZesESjfZjqVWCX/MqpVtj2/O0GcUWR6vJCVy4fe30oDtfh/09+/0jQCA9y1CAQDgEQoAAI9QAAB4hAIAwCMUAAAeoQAA8AgFAIBHKAAAPEIBAOAFlwwkMrYqClXCKwNqhllJqhk+kZ5I2KoOspnwj6QnnK26II7Day5SKVv/Q1+5xzQ/XAr/eHyqYqzzMMy2dnSadteq4fUciYTtuFW11S7k4/Ab4ofHjzbtLiTD72/PvmA77u7yxuDZlPFpY82F35cTeVv9Q3XYVkWhOPwyTDfbjiXdXAierVZtu4vd/cGz8ZDtsTMErxQAAB6hAADwCAUAgEcoAAA8QgEA4BEKAACPUAAAeIQCAMAjFAAAHqEAAPAIBQCAF959FNk6hJKp8AacdCJt2p1KhHeJVKtF025Xq4bPGjM1SoYfdzJl60tpKDSZ5pOjc8GzvRu7TbvLg73Bs6l2Y+dMKhM8Gztb91GUtXVZJQxX/5b+8K4pSRoshnc8VQ19Q5KUy4df9/m87b7ZG4efz9jYHVYpG69PQ/dRbLsZKpEL/4FK75Bpd1wNP5/ZtrxpdwheKQAAPEIBAOARCgAAj1AAAHiEAgDAIxQAAB6hAADwCAUAgEcoAAA8QgEA4AXXXKRtn0hXOpMNni2XbRUaifBPryuS7aPxFUMtRtJQWyFJmVT4ZRKrbNqdK9jqCBqamsOHY9v1Ux4In+3pttU/5JvCb4gNTbbLpBrbbis9feH1H+WSreoglwm/bXU2G65LSaVseM3F+q51tt2p8MqNfL5g2u2Mt/FaKfy2UqvYrnu58PtEXLTtzjWFXz8Kf0gJxisFAIBHKAAAPEIBAOARCgAAj1AAAHiEAgDAIxQAAB6hAADwCAUAgEcoAAA8QgEA4AV3H1VlKz+KauHdIKmkrVsnroX3AtVqJdPuZBR+Pl2tatpdKYfPV2Nb91E6svUwpV14F0+i3G/a3VQI77SpJRpMuyvV8OKrvn7bZVip9Zrm04nw220hbSjsktTtwjuExo0da9r99B/+EDxbdrbbeL45/LpPONtz0mqPrUOoZngMqkW28xkbdiecrbOpMhx+3VcHw2dD8UoBAOARCgAAj1AAAHiEAgDAIxQAAB6hAADwCAUAgEcoAAA8QgEA4BEKAAAvuObCGT/uXi4Xg2ezKdvuTDq8iqJUDK9zkKS4Fv5R+ihhy9S+vvAahbJsFQ2FZN40nxkKr12IUrbdyWz49dPUGHwTlCR1bxkMnn3u2ZdNuwuRreZiXHM2eDYd227jeyXDb1tDRVuVS7kcPp8v2GpI8slM8OzwwLBpd23YdhlWDTU0ccVWoVEuhV+GybSt5sJy3MmUrd4mBK8UAAAeoQAA8AgFAIBHKAAAPEIBAOARCgAAj1AAAHiEAgDAIxQAAB6hAADwCAUAgBdcPNNsq0CRs1SJGHtH4jh8PjZ2NlVq4Z0mw8O2zpmBSl/wbDEK746SpFLN1q8yWh3Bs+mGFtPuPz7/TPCsK4XPSlJkeB6TrNiu+8Z8bJpPRoXg2Xw2vBNIkka3jgqeTaQbTbvbG5qCZ3/xrO366RnsD551zvacNJGx9WSpEt7BlYjCu8Cs87FttdKGPiNXtj12huCVAgDAIxQAAB6hAADwCAUAgEcoAAA8QgEA4BEKAACPUAAAeIQCAMAjFAAAHqEAAPCCy0QaG2y9I5VKeH/HsLG+Y3AgvHOoUqmYdpdKg8GzxaKt+6hm6EupufDLT5Ii2bp1olT49fnC078x7f79734bPJuNbH1De48bGzw7eeIE0+7GfM40n8kZCsGM/TeJbHg/Uc543NPGhV8uJRfeHyRJq194Knh2YCj8viZJ2YLtfCo23IeM5zOuhN9uY9tq1Url4Nkq3UcAgF2JUAAAeIQCAMAjFAAAHqEAAPAIBQCARygAADxCAQDgEQoAAI9QAAB4wV0Hrlo1LS6XisGzQ6Uh0+44Dq+uiKvDtt3V8I+Yx7JVaBRd+GUYhV81kqSccb5WDT/27q6XTbubc+GdDqPb9zLtzmfDd2eStgqNdCZrms9lw+eLxfD7gyT19w8Ezw4Ohs9KUmPH+ODZzua9TbvHtW8Knl0b225XUdpW6RBXw+cThtoXSRoeDH+cSBmfe6cT4fPZZNq0OwSvFAAAHqEAAPAIBQCARygAADxCAQDgEQoAAI9QAAB4hAIAwCMUAAAeoQAA8AgFAIAXXPjRV0yaFheL4V0i1bjBtLum8A6hOLJ1g8TpXPCsSwzadg+Hd9QU4/BuFUnKGvM9Yejiyadt132mvSV4tjFv6xtS5IJHS6WSaXWhEL5bkoYNl2GlYus+KhXDu6ki2a4flw/vA3tpfZdpd/9A+PkstDSZdpeKtuszW80Ez9queSkVGx7fkrbtKUNllyvZ+qBC8EoBAOARCgAAj1AAAHiEAgDAIxQAAB6hAADwCAUAgEcoAAA8QgEA4BEKAAAv+LPag5XItDiOwj/CHqdtHwOvKfzj7tlM+EfdJSmdCD+f2Wp43YYktYY3F6hcs+1W1VajUF73TPBsY85WRVGJw2sXEobLW5LSacOxONvu4aF+03zNhT+ncs52Gy+Xw2tO0mnbbbxiuG1t3LTRtLu/P/wyHDW+w7TbJW3XZ9JwmVertgqNLcnwyppKZKuiyEaG+09TeN1G8M6dvhEA8L5FKAAAPEIBAOARCgAAj1AAAHiEAgDAIxQAAB6hAADwCAUAgEcoAAA8QgEA4AUXZySrW4yLw/MmnbR1t7hkeHeLc7ZOk9hQUeOS4R0lkhTlws9nKpUz7a7W0qb5gXhM8Gw01G3anbT0yNRi027JcgXZdg8PhffZSFLV0H2USNqun7ga3peTbcybdicKLcGzuUKjbXdveDfVPqMPMu22Poet1cLLxirlQdPu1mJf8GzsbN1HacP5LJZsxx2CVwoAAI9QAAB4hAIAwCMUAAAeoQAA8AgFAIBHKAAAPEIBAOARCgAAj1AAAHjBNRdR+KgkabgYXnVQS0em3ZYjSSRsVQe1cnjVQT4b/pH+N48l/GP3ccV63GXTfKaxEDxbaGo17Y4GwytRysNF0+5aLbwyYHBwyLQ7mbLVlmSyDcGzUWR7/hVH4ecz1dBq2l2JwutWxu890bS7q6sreDbfvJdpd4PxfNYMFSpVw+1KkuJq+O22qvBaHkmKy+Hzpf5e0+4QvFIAAHiEAgDAIxQAAB6hAADwCAUAgEcoAAA8QgEA4BEKAACPUAAAeIQCAMAjFAAAXnCNUGOLradEufAukUrV1jsiQ0VNQs62OxHeZzNYDe8ykqR0HH4scWy7TIZLw6b5TCq8tynX3GbaPdTfEzwbx7aOp6LhfCaStuc8zVnb+cykw1u4XGTrDqu58MulXLPdxiPDZdjZ1mLaPX3GvsGzGdl6e9LOeF924Z1qkeH+IElROvxxohIbu4+y4bfbTMF2mw3BKwUAgEcoAAA8QgEA4BEKAACPUAAAeIQCAMAjFAAAHqEAAPAIBQCARygAADxCAQDgBReytOVtHTXpRHhPSTJj6+/IN40OnnU123Fv2rQ+eLZs3J1OhfffRIaeJMnWZyNJFct6F97zIklu/cvBs8lCu2l3bXhD8GxDQ8a0u6Glw3Ys5fDuq2rV1n+TTIcfe7FaNu1OD4Z3DiUj2/PGKePHB89WkrbbeCJRNM2rUgqfjW3nM4oMt62KrcesZDiWqrN1aoXglQIAwCMUAAAeoQAA8AgFAIBHKAAAPEIBAOARCgAAj1AAAHiEAgDAIxQAAF7wZ6STCVt+FDJR8KzLN5p2R2nDfMJW/9DYGP7x9VRs253NhH/cvWzqoZCGkraPu/fVssGzxaKtXsBSjdA4/sOm3SWFXz+F0eNMu5smTjfN9699Mni2vHmdaXe+qSV4Nt0x0bQ7Lobfbku9m0y7o2r4dT+UTJt2V2ytMnLOUP8RhT9eSZKLw2tLYmNlTS0Kvy+Xa7bjDsErBQCARygAADxCAQDgEQoAAI9QAAB4hAIAwCMUAAAeoQAA8AgFAIBHKAAAPEIBAOAFl2xEKVtPSc4wP2jos5Gk2OWCZ7PZ8FlJisv9wbPV/j7T7uou7EvJGOO9PRF+LN21N0y7U6nw6zNTsF0/DZ1jgmezreGzklTLhfcNSVK2c3z47sHNpt2Wq7/JeD6jlKH3KvWyaXd5Y/h846hRpt2lTKtpPnbhZUnVqq3fq1oLn49L4fc1SUobHjtzCVvnWQheKQAAPEIBAOARCgAAj1AAAHiEAgDAIxQAAB6hAADwCAUAgEcoAAA8QgEA4AV/Rrqtudm02Bk+Yj7cO2jaHVWHgmdLtYppt6rhx9LcFF4XIEmVWngG10pl0+7YUKEhSY2NjeHDTXnT7oHWtuDZXM72Mf3GhkLwbEuD7TlPefAl03w1KgXP5lraTbsHNm8KP47+dabdrml08GymJfy6lGx1HunYdr9vGDXFNF+Mwm/j1vtPZJitlm335Uo5/HYl43GH4JUCAMAjFAAAHqEAAPAIBQCARygAADxCAQDgEQoAAI9QAAB4hAIAwCMUAAAeoQAA8IKLZyJn6+9IGMpBBnpeN+3+3VMPB8/Ghr4hSfrIh8cFz7Z9KHxWkjK58A6hXN7WNzQ8FN4HJUmZdPgVVBocMO1uHTU2eDbX3GDaHVfCu6xaGm2XYZyomebL+UzwrO3akXo3h3cIDax7zrTbtW8Jnk1lDB1ZkrJN4R1plZ7XTLuLrz1jmh9Ihx97rqHVtLtQCO+yymVsHWmZTPjtthbbbrMheKUAAPAIBQCARygAADxCAQDgEQoAAI9QAAB4hAIAwCMUAAAeoQAA8AgFAIAXXHNRKpVsm10cPNrc2mRavaHLUIsR23Jv/xljwlc720fM40r4fLniTLsj27gG+nuDZweLw6bdja2jg2dbm2zXvUrhl2FkqFqRpEwmvLZCklLp8PqCqBZ+f5CkbC4XPFst2a6f5kx4tUhsqIqQpFIt/FiGB2zlH3Fpg2neNbUEzxZLPabd1YGNwbPpVHj1hyRFufD5dNZW5RKCVwoAAI9QAAB4hAIAwCMUAAAeoQAA8AgFAIBHKAAAPEIBAOARCgAAj1AAAHiEAgDAC+4+6u4N78qRpFwuvJMjGdmyqb01vNNkYNDW2VRoMBx30lauUzX0RzlDT5IkuZrtMozL5eDZhqZ20+7OvVqDZ5MpW2lTJh/eN1RotvX2GG+GKpbCL8NcLvy4JamQD78ddhuOQ5IamwrBs3EibdqtWjF4tJI17k7arqCs4b5crdq6qarV8N6mnj7bY6cSwQ/LShj6t9504o53GjcCAD7ACAUAgEcoAAA8QgEA4BEKAACPUAAAeIQCAMAjFAAAHqEAAPAIBQCAF/x56mps+xj4+k2bg2ejhK0uYvTovYJn4w3dpt1Jw8f6e7YMmHZL4dUVqVT4R90lKZtNmuYzyYbg2Ti21REMl8OrDiJjnUcyHX4siaTtMrHWXOQN1RXGFhI5F17/0djWZtrd1tYcPFsy1KFIUlNDa/Bsrwu/H0tSz+Ytpvm4Gn7bipyxQiOVC55NNYbPSlLK8HhYKVsfg3aMVwoAAI9QAAB4hAIAwCMUAAAeoQAA8AgFAIBHKAAAPEIBAOARCgAAj1AAAHiEAgDACy7YSRs6ZySpVOkLnk0mbT0/ozo7gmf7+4dNu3PZ8D4b1aqm3ZaOp1KlYtpt6cqRpKHeweDZWsJwmUjavGlT8GxHW7tpd9JwNp3xMizFu+4yj0u222G1Ft7b0zFurGl3Kh1+O3ThDxFv7jZ0ApUbm0y7q8Ml03zrPpOCZ4eGh0y7N2xYFzybyti6jyrV8OfqxZKtmyoErxQAAB6hAADwCAUAgEcoAAA8QgEA4BEKAACPUAAAeIQCAMAjFAAAHqEAAPAIBQCAF1xsknLhfSmStFdrS/BsNmPr1qkYOm36esKPQ5IKuULwbMbQISNJA/29wbNZYx+UYtv4QE9P8GxDW5tp96jW8D6jfNbWC9OzsTt4trt7o2l3rqXZNJ81HHtvd/hxS1ImmwmebTUet6rhHULZdPhxSFJNtj4wC6fwPihJyuXDn/Om0g2m3eVK+ONKwtgf5VwyeLbaaLt+QvBKAQDgEQoAAI9QAAB4hAIAwCMUAAAeoQAA8AgFAIBHKAAAPEIBAOARCgAAL/jz10k50+JyqRw829Rg+4h5OvxT4BrT2WranYjCz2d//4Bp99BQMXi2kLJVaPQNbDHNv/Tqq8GzkzK25w5t7R3Bs5Gz9XP09mwOnh0aHjLt7jDeVuJyeF1E9/o3TLvbOsKrQlKZtGm35dp0sa1awpn6VmyPKZVqeL2NJA30hd8nEilbXURzY/hjVj4fXp0jSVEUXosxXAx/TAnFKwUAgEcoAAA8QgEA4BEKAACPUAAAeIQCAMAjFAAAHqEAAPAIBQCARygAADxCAQDgBZdsxKZOE0mJ8LzZtKXbtNpSCxQZj3t4OLzPaGho2LQ7duGlTQPJ8F4dSVpXedE0n8zlg2drtooalcvhvVclQ0eWJGUL4R01qYztuk85W7fOli29wbMZS2GXpDH7jAmejVLhXTmSFCn8DhQ7W/dRZJhPRLbdmYytn6ituSX8WIyXoQyXYcHY7VapVoNnM8bOphC8UgAAeIQCAMAjFAAAHqEAAPAIBQCARygAADxCAQDgEQoAAI9QAAB4hAIAwAv+bHctaeiWkJRJpYNnK8YehXKpGL67ZKs6sFQ0pNPh51GSiqXwj6+/PPScaXe21fYx/ZmFmcGztVr4cUu26orXN71h2t2QDj+fjY22eoGevj7T/BsbuoJnC63hlQuS5Aw1MbGhFkGSoih8dyppq+fIGu4TxcSgaXetZqvFSKUM53MXPj1OxLbHt5RlPGW7TELwSgEA4BEKAACPUAAAeIQCAMAjFAAAHqEAAPAIBQCARygAADxCAQDgEQoAAI9QAAB4wUUyw+WSaXE+MnQfVWzdLYkovIfJRbbekWqpEjxbdrZepWGFdzZtKK417Z6iD5nmI2fpTLFdP07hl3lrY5NpdzKVCZ4ty9YLs379etN8b9+W4Nl92ttNu9dt3Bw8W6vabod7jx0bPJtK5Uy705brpxjeHSVJA4MDpvlMJry3KZ2wdYeVyuGPE8Ml22NnIhH++Fat2nYH/f07fSMA4H2LUAAAeIQCAMAjFAAAHqEAAPAIBQCARygAADxCAQDgEQoAAI9QAAB4wZ/t3tjzhmlxZ6YtfDi2VVGk89ng2YFi2bR7uBQ+74w1F6+78MtwqDxk2u0UfplI0kBlMHw4YawKMVyfTQ22motaFF65MTgwbNqdzNguw3ET9wmebWkxns9EeEVDz5DtttLVE17P0Ziz1Sg0FBqCZzNN4bOSNH7iZNN8FIU/500kw2t5JCmdCd+dMu6ODDU++aztNhuCVwoAAI9QAAB4hAIAwCMUAAAeoQAA8AgFAIBHKAAAPEIBAOARCgAAj1AAAHiEAgDAi5xztmIbAMAHFq8UAAAeoQAA8AgFAIBHKAAAPEIBAOARCgAAj1AAAHiEAgDAIxQAAN7/A7kic4OMPPMtAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True Label: Deer\n", + "Predicted Label: Deer\n", + "Confidence: 0.99\n" + ] + } + ], + "source": [ + "# **Additional Codes Developed**\n", + "\n", + "# Tests on one image\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.applications.densenet import preprocess_input\n", + "from tensorflow.keras.models import load_model\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Load CIFAR-10 dataset (for testing purposes)\n", + "(_, _), (X_test, y_test) = cifar10.load_data()\n", + "\n", + "# Loads the trained model\n", + "model = load_model('/Users/sylviaperez-montero/Desktop/project-1-deep-learning-image-classification-with-cnn-main/cnn_20_epochs.keras')\n", + "\n", + "# Defines CIFAR-10 class labels\n", + "labels = ['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer', \n", + " 'Dog', 'Frog', 'Horse', 'Ship', 'Truck']\n", + "\n", + "# Selects a single image from the test set\n", + "image_index = 100 # Change index to test different images\n", + "image = X_test[image_index]\n", + "true_label = y_test[image_index][0]\n", + "\n", + "# Preprocesses the image\n", + "preprocessed_image = image / 255.0 # Normalize pixel values to [0, 1]\n", + "preprocessed_image = np.expand_dims(preprocessed_image, axis=0) # Add batch dimension\n", + "\n", + "# Makes a prediction\n", + "predictions = model.predict(preprocessed_image)\n", + "predicted_class = np.argmax(predictions, axis=1)[0]\n", + "confidence = np.max(predictions)\n", + "\n", + "# Displays the image and results\n", + "plt.imshow(image)\n", + "plt.axis('off')\n", + "plt.title(f\"True: {labels[true_label]}\\nPredicted: {labels[predicted_class]} ({confidence:.2f})\")\n", + "plt.show()\n", + "\n", + "print(f\"True Label: {labels[true_label]}\")\n", + "print(f\"Predicted Label: {labels[predicted_class]}\")\n", + "print(f\"Confidence: {confidence:.2f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "501f70cb-4055-4e85-8dd8-0f076c62bf53", + "metadata": {}, + "outputs": [], + "source": [ + "# Randomly selects 10 images, as required by the project.\n", + "\n", + "# Imports the necessary libraries\n", + "import os\n", + "import numpy as np\n", + "from tensorflow.keras.datasets import cifar10\n", + "from PIL import Image\n", + "\n", + "# Loads CIFAR-10 dataset\n", + "(X_train, y_train), (_, _) = cifar10.load_data()\n", + "\n", + "# Creates a folder named 'images' in the current directory\n", + "output_dir = \"images\"\n", + "os.makedirs(output_dir, exist_ok=True)\n", + "\n", + "# Selects 10 random indices\n", + "random_indices = np.random.choice(len(X_train), 10, replace=False)\n", + "\n", + "# Saves the selected images\n", + "for i, idx in enumerate(random_indices):\n", + " # Get the image\n", + " img = X_train[idx]\n", + " \n", + " # Converts the image array to a PIL image\n", + " pil_img = Image.fromarray(img)\n", + " \n", + " # Saves the image with a sequential filename (e.g., image_1.png, image_2.png, etc.)\n", + " filename = os.path.join(output_dir, f\"image_{i+1}.png\")\n", + " pil_img.save(filename)\n", + "\n", + " print(f\"Saved: {filename}\")\n", + "\n", + "print(f\"All 10 images saved in the '{output_dir}' directory.\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}