WARNING: THIS SITE IS A MIRROR OF GITHUB.COM / IT CANNOT LOGIN OR REGISTER ACCOUNTS / THE CONTENTS ARE PROVIDED AS-IS / THIS SITE ASSUMES NO RESPONSIBILITY FOR ANY DISPLAYED CONTENT OR LINKS / IF YOU FOUND SOMETHING MAY NOT GOOD FOR EVERYONE, CONTACT ADMIN AT ilovescratch@foxmail.com
You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Sybil attacks, in which a large number of adversary-controlled nodes join a network, are a concern for many peer-to-peer database systems, necessitating expensive countermeasures such as proofof-work. However, there is a category of database applications that are, by design, immune to Sybil attacks because they can tolerate arbitrary numbers of Byzantine-faulty nodes. In this paper, we characterize this category of applications using a consistency model we call Byzantine Eventual Consistency (BEC). We introduce an algorithm that guarantees BEC based on Byzantine causal broadcast, prove its correctness, and demonstrate near-optimal performance in a prototype implementation.