WARNING: THIS SITE IS A MIRROR OF GITHUB.COM / IT CANNOT LOGIN OR REGISTER ACCOUNTS / THE CONTENTS ARE PROVIDED AS-IS / THIS SITE ASSUMES NO RESPONSIBILITY FOR ANY DISPLAYED CONTENT OR LINKS / IF YOU FOUND SOMETHING MAY NOT GOOD FOR EVERYONE, CONTACT ADMIN AT ilovescratch@foxmail.com
Skip to content

Commit 105c228

Browse files
author
Bot
committed
Update gh-pages
1 parent a07de57 commit 105c228

File tree

2 files changed

+2
-2
lines changed

2 files changed

+2
-2
lines changed

index.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -32347,7 +32347,7 @@ <h1><span class="secnum">21.1.3.2</span> Number.prototype.toExponential ( <var>f
3234732347
<emu-alg><ol><li>Let <var>x</var> be ?&nbsp;<emu-xref aoid="ThisNumberValue" id="_ref_9917"><a href="#sec-thisnumbervalue">ThisNumberValue</a></emu-xref>(<emu-val>this</emu-val> value).</li><li>Let <var>f</var> be ?&nbsp;<emu-xref aoid="ToIntegerOrInfinity" id="_ref_9918"><a href="#sec-tointegerorinfinity" class="e-user-code">ToIntegerOrInfinity</a></emu-xref>(<var>fractionDigits</var>).</li><li><emu-xref href="#assert" id="_ref_9919"><a href="#assert">Assert</a></emu-xref>: If <var>fractionDigits</var> is <emu-val>undefined</emu-val>, then <var>f</var> is 0.</li><li>If <var>x</var> is not <emu-xref href="#finite" id="_ref_9920"><a href="#finite">finite</a></emu-xref>, return <emu-xref aoid="Number::toString" id="_ref_9921"><a href="#sec-numeric-types-number-tostring">Number::toString</a></emu-xref>(<var>x</var>, 10).</li><li>If <var>f</var> &lt; 0 or <var>f</var> &gt; 100, throw a <emu-val>RangeError</emu-val> exception.</li><li>Set <var>x</var> to <emu-xref aoid="ℝ" id="_ref_9922"><a href="#ℝ">ℝ</a></emu-xref>(<var>x</var>).</li><li>Let <var>s</var> be the empty String.</li><li>If <var>x</var> &lt; 0, then<ol><li>Set <var>s</var> to <emu-val>"-"</emu-val>.</li><li>Set <var>x</var> to -<var>x</var>.</li></ol></li><li>If <var>x</var> = 0, then<ol><li>Let <var>m</var> be the String value consisting of <var>f</var> + 1 occurrences of the code unit 0x0030 (DIGIT ZERO).</li><li>Let <var>e</var> be 0.</li></ol></li><li>Else,<ol><li>If <var>fractionDigits</var> is not <emu-val>undefined</emu-val>, then<ol><li>Let <var>e</var> and <var>n</var> be <emu-xref href="#integer" id="_ref_9923"><a href="#integer">integers</a></emu-xref> such that 10<sup><var>f</var></sup> ≤ <var>n</var> &lt; 10<sup><var>f</var> + 1</sup> and for which <var>n</var> × 10<sup><var>e</var> - <var>f</var></sup> - <var>x</var> is as close to zero as possible. If there are two such sets of <var>e</var> and <var>n</var>, pick the <var>e</var> and <var>n</var> for which <var>n</var> × 10<sup><var>e</var> - <var>f</var></sup> is larger.</li></ol></li><li>Else,<ol><li id="step-number-proto-toexponential-intermediate-values">Let <var>e</var>, <var>n</var>, and <var>ff</var> be <emu-xref href="#integer" id="_ref_9924"><a href="#integer">integers</a></emu-xref> such that <var>ff</var> ≥ 0, 10<sup><var>ff</var></sup> ≤ <var>n</var> &lt; 10<sup><var>ff</var> + 1</sup>, <emu-xref aoid="𝔽" id="_ref_9925"><a href="#𝔽">𝔽</a></emu-xref>(<var>n</var> × 10<sup><var>e</var> - <var>ff</var></sup>) is <emu-xref aoid="𝔽" id="_ref_9926"><a href="#𝔽">𝔽</a></emu-xref>(<var>x</var>), and <var>ff</var> is as small as possible. Note that the decimal representation of <var>n</var> has <var>ff</var> + 1 digits, <var>n</var> is not divisible by 10, and the least significant digit of <var>n</var> is not necessarily uniquely determined by these criteria.</li><li>Set <var>f</var> to <var>ff</var>.</li></ol></li><li>Let <var>m</var> be the String value consisting of the digits of the decimal representation of <var>n</var> (in order, with no leading zeroes).</li></ol></li><li>If <var>f</var> ≠ 0, then<ol><li>Let <var>a</var> be the first code unit of <var>m</var>.</li><li>Let <var>b</var> be the other <var>f</var> code units of <var>m</var>.</li><li>Set <var>m</var> to the <emu-xref href="#string-concatenation" id="_ref_9927"><a href="#string-concatenation">string-concatenation</a></emu-xref> of <var>a</var>, <emu-val>"."</emu-val>, and <var>b</var>.</li></ol></li><li>If <var>e</var> = 0, then<ol><li>Let <var>c</var> be <emu-val>"+"</emu-val>.</li><li>Let <var>d</var> be <emu-val>"0"</emu-val>.</li></ol></li><li>Else,<ol><li>If <var>e</var> &gt; 0, then<ol><li>Let <var>c</var> be <emu-val>"+"</emu-val>.</li></ol></li><li>Else,<ol><li><emu-xref href="#assert" id="_ref_9928"><a href="#assert">Assert</a></emu-xref>: <var>e</var> &lt; 0.</li><li>Let <var>c</var> be <emu-val>"-"</emu-val>.</li><li>Set <var>e</var> to -<var>e</var>.</li></ol></li><li>Let <var>d</var> be the String value consisting of the digits of the decimal representation of <var>e</var> (in order, with no leading zeroes).</li></ol></li><li>Set <var>m</var> to the <emu-xref href="#string-concatenation" id="_ref_9929"><a href="#string-concatenation">string-concatenation</a></emu-xref> of <var>m</var>, <emu-val>"e"</emu-val>, <var>c</var>, and <var>d</var>.</li><li>Return the <emu-xref href="#string-concatenation" id="_ref_9930"><a href="#string-concatenation">string-concatenation</a></emu-xref> of <var>s</var> and <var>m</var>.</li></ol></emu-alg>
3234832348
<emu-note><span class="note">Note</span><div class="note-contents">
3234932349
<p>For implementations that provide more accurate conversions than required by the rules above, it is recommended that the following alternative version of step <emu-xref href="#step-number-proto-toexponential-intermediate-values" id="_ref_637"><a href="#step-number-proto-toexponential-intermediate-values">10.b.i</a></emu-xref> be used as a guideline:</p>
32350-
<emu-alg replaces-step="step-number-proto-toexponential-intermediate-values"><ol start="1" class="nested-twice"><li>Let <var>e</var>, <var>n</var>, and <var>f</var> be <emu-xref href="#integer" id="_ref_9931"><a href="#integer">integers</a></emu-xref> such that <var>f</var> ≥ 0, 10<sup><var>f</var></sup> ≤ <var>n</var> &lt; 10<sup><var>f</var> + 1</sup>, <emu-xref aoid="𝔽" id="_ref_9932"><a href="#𝔽">𝔽</a></emu-xref>(<var>n</var> × 10<sup><var>e</var> - <var>f</var></sup>) is <emu-xref aoid="𝔽" id="_ref_9933"><a href="#𝔽">𝔽</a></emu-xref>(<var>x</var>), and <var>f</var> is as small as possible. If there are multiple possibilities for <var>n</var>, choose the value of <var>n</var> for which <emu-xref aoid="𝔽" id="_ref_9934"><a href="#𝔽">𝔽</a></emu-xref>(<var>n</var> × 10<sup><var>e</var> - <var>f</var></sup>) is closest in value to <emu-xref aoid="𝔽" id="_ref_9935"><a href="#𝔽">𝔽</a></emu-xref>(<var>x</var>). If there are two such possible values of <var>n</var>, choose the one that is even.</li></ol></emu-alg>
32350+
<emu-alg replaces-step="step-number-proto-toexponential-intermediate-values"><ol start="1" class="nested-twice"><li>Let <var>e</var>, <var>n</var>, and <var>ff</var> be <emu-xref href="#integer" id="_ref_9931"><a href="#integer">integers</a></emu-xref> such that <var>ff</var> ≥ 0, 10<sup><var>ff</var></sup> ≤ <var>n</var> &lt; 10<sup><var>ff</var> + 1</sup>, <emu-xref aoid="𝔽" id="_ref_9932"><a href="#𝔽">𝔽</a></emu-xref>(<var>n</var> × 10<sup><var>e</var> - <var>ff</var></sup>) is <emu-xref aoid="𝔽" id="_ref_9933"><a href="#𝔽">𝔽</a></emu-xref>(<var>x</var>), and <var>ff</var> is as small as possible. If there are multiple possibilities for <var>n</var>, choose the value of <var>n</var> for which <emu-xref aoid="𝔽" id="_ref_9934"><a href="#𝔽">𝔽</a></emu-xref>(<var>n</var> × 10<sup><var>e</var> - <var>ff</var></sup>) is closest in value to <emu-xref aoid="𝔽" id="_ref_9935"><a href="#𝔽">𝔽</a></emu-xref>(<var>x</var>). If there are two such possible values of <var>n</var>, choose the one that is even.</li></ol></emu-alg>
3235132351
</div></emu-note>
3235232352
</emu-clause>
3235332353

multipage/numbers-and-dates.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -359,7 +359,7 @@ <h1><span class="secnum">21.1.3.2</span> Number.prototype.toExponential ( <var>f
359359
<emu-alg><ol><li>Let <var>x</var> be ?&nbsp;<emu-xref aoid="ThisNumberValue" id="_ref_9917"><a href="numbers-and-dates.html#sec-thisnumbervalue">ThisNumberValue</a></emu-xref>(<emu-val>this</emu-val> value).</li><li>Let <var>f</var> be ?&nbsp;<emu-xref aoid="ToIntegerOrInfinity" id="_ref_9918"><a href="abstract-operations.html#sec-tointegerorinfinity" class="e-user-code">ToIntegerOrInfinity</a></emu-xref>(<var>fractionDigits</var>).</li><li><emu-xref href="#assert" id="_ref_9919"><a href="notational-conventions.html#assert">Assert</a></emu-xref>: If <var>fractionDigits</var> is <emu-val>undefined</emu-val>, then <var>f</var> is 0.</li><li>If <var>x</var> is not <emu-xref href="#finite" id="_ref_9920"><a href="ecmascript-data-types-and-values.html#finite">finite</a></emu-xref>, return <emu-xref aoid="Number::toString" id="_ref_9921"><a href="ecmascript-data-types-and-values.html#sec-numeric-types-number-tostring">Number::toString</a></emu-xref>(<var>x</var>, 10).</li><li>If <var>f</var> &lt; 0 or <var>f</var> &gt; 100, throw a <emu-val>RangeError</emu-val> exception.</li><li>Set <var>x</var> to <emu-xref aoid="ℝ" id="_ref_9922"><a href="notational-conventions.html#%E2%84%9D">ℝ</a></emu-xref>(<var>x</var>).</li><li>Let <var>s</var> be the empty String.</li><li>If <var>x</var> &lt; 0, then<ol><li>Set <var>s</var> to <emu-val>"-"</emu-val>.</li><li>Set <var>x</var> to -<var>x</var>.</li></ol></li><li>If <var>x</var> = 0, then<ol><li>Let <var>m</var> be the String value consisting of <var>f</var> + 1 occurrences of the code unit 0x0030 (DIGIT ZERO).</li><li>Let <var>e</var> be 0.</li></ol></li><li>Else,<ol><li>If <var>fractionDigits</var> is not <emu-val>undefined</emu-val>, then<ol><li>Let <var>e</var> and <var>n</var> be <emu-xref href="#integer" id="_ref_9923"><a href="notational-conventions.html#integer">integers</a></emu-xref> such that 10<sup><var>f</var></sup> ≤ <var>n</var> &lt; 10<sup><var>f</var> + 1</sup> and for which <var>n</var> × 10<sup><var>e</var> - <var>f</var></sup> - <var>x</var> is as close to zero as possible. If there are two such sets of <var>e</var> and <var>n</var>, pick the <var>e</var> and <var>n</var> for which <var>n</var> × 10<sup><var>e</var> - <var>f</var></sup> is larger.</li></ol></li><li>Else,<ol><li id="step-number-proto-toexponential-intermediate-values">Let <var>e</var>, <var>n</var>, and <var>ff</var> be <emu-xref href="#integer" id="_ref_9924"><a href="notational-conventions.html#integer">integers</a></emu-xref> such that <var>ff</var> ≥ 0, 10<sup><var>ff</var></sup> ≤ <var>n</var> &lt; 10<sup><var>ff</var> + 1</sup>, <emu-xref aoid="𝔽" id="_ref_9925"><a href="notational-conventions.html#%F0%9D%94%BD">𝔽</a></emu-xref>(<var>n</var> × 10<sup><var>e</var> - <var>ff</var></sup>) is <emu-xref aoid="𝔽" id="_ref_9926"><a href="notational-conventions.html#%F0%9D%94%BD">𝔽</a></emu-xref>(<var>x</var>), and <var>ff</var> is as small as possible. Note that the decimal representation of <var>n</var> has <var>ff</var> + 1 digits, <var>n</var> is not divisible by 10, and the least significant digit of <var>n</var> is not necessarily uniquely determined by these criteria.</li><li>Set <var>f</var> to <var>ff</var>.</li></ol></li><li>Let <var>m</var> be the String value consisting of the digits of the decimal representation of <var>n</var> (in order, with no leading zeroes).</li></ol></li><li>If <var>f</var> ≠ 0, then<ol><li>Let <var>a</var> be the first code unit of <var>m</var>.</li><li>Let <var>b</var> be the other <var>f</var> code units of <var>m</var>.</li><li>Set <var>m</var> to the <emu-xref href="#string-concatenation" id="_ref_9927"><a href="ecmascript-data-types-and-values.html#string-concatenation">string-concatenation</a></emu-xref> of <var>a</var>, <emu-val>"."</emu-val>, and <var>b</var>.</li></ol></li><li>If <var>e</var> = 0, then<ol><li>Let <var>c</var> be <emu-val>"+"</emu-val>.</li><li>Let <var>d</var> be <emu-val>"0"</emu-val>.</li></ol></li><li>Else,<ol><li>If <var>e</var> &gt; 0, then<ol><li>Let <var>c</var> be <emu-val>"+"</emu-val>.</li></ol></li><li>Else,<ol><li><emu-xref href="#assert" id="_ref_9928"><a href="notational-conventions.html#assert">Assert</a></emu-xref>: <var>e</var> &lt; 0.</li><li>Let <var>c</var> be <emu-val>"-"</emu-val>.</li><li>Set <var>e</var> to -<var>e</var>.</li></ol></li><li>Let <var>d</var> be the String value consisting of the digits of the decimal representation of <var>e</var> (in order, with no leading zeroes).</li></ol></li><li>Set <var>m</var> to the <emu-xref href="#string-concatenation" id="_ref_9929"><a href="ecmascript-data-types-and-values.html#string-concatenation">string-concatenation</a></emu-xref> of <var>m</var>, <emu-val>"e"</emu-val>, <var>c</var>, and <var>d</var>.</li><li>Return the <emu-xref href="#string-concatenation" id="_ref_9930"><a href="ecmascript-data-types-and-values.html#string-concatenation">string-concatenation</a></emu-xref> of <var>s</var> and <var>m</var>.</li></ol></emu-alg>
360360
<emu-note><span class="note">Note</span><div class="note-contents">
361361
<p>For implementations that provide more accurate conversions than required by the rules above, it is recommended that the following alternative version of step <emu-xref href="#step-number-proto-toexponential-intermediate-values" id="_ref_637"><a href="numbers-and-dates.html#step-number-proto-toexponential-intermediate-values">10.b.i</a></emu-xref> be used as a guideline:</p>
362-
<emu-alg replaces-step="step-number-proto-toexponential-intermediate-values"><ol start="1" class="nested-twice"><li>Let <var>e</var>, <var>n</var>, and <var>f</var> be <emu-xref href="#integer" id="_ref_9931"><a href="notational-conventions.html#integer">integers</a></emu-xref> such that <var>f</var> ≥ 0, 10<sup><var>f</var></sup> ≤ <var>n</var> &lt; 10<sup><var>f</var> + 1</sup>, <emu-xref aoid="𝔽" id="_ref_9932"><a href="notational-conventions.html#%F0%9D%94%BD">𝔽</a></emu-xref>(<var>n</var> × 10<sup><var>e</var> - <var>f</var></sup>) is <emu-xref aoid="𝔽" id="_ref_9933"><a href="notational-conventions.html#%F0%9D%94%BD">𝔽</a></emu-xref>(<var>x</var>), and <var>f</var> is as small as possible. If there are multiple possibilities for <var>n</var>, choose the value of <var>n</var> for which <emu-xref aoid="𝔽" id="_ref_9934"><a href="notational-conventions.html#%F0%9D%94%BD">𝔽</a></emu-xref>(<var>n</var> × 10<sup><var>e</var> - <var>f</var></sup>) is closest in value to <emu-xref aoid="𝔽" id="_ref_9935"><a href="notational-conventions.html#%F0%9D%94%BD">𝔽</a></emu-xref>(<var>x</var>). If there are two such possible values of <var>n</var>, choose the one that is even.</li></ol></emu-alg>
362+
<emu-alg replaces-step="step-number-proto-toexponential-intermediate-values"><ol start="1" class="nested-twice"><li>Let <var>e</var>, <var>n</var>, and <var>ff</var> be <emu-xref href="#integer" id="_ref_9931"><a href="notational-conventions.html#integer">integers</a></emu-xref> such that <var>ff</var> ≥ 0, 10<sup><var>ff</var></sup> ≤ <var>n</var> &lt; 10<sup><var>ff</var> + 1</sup>, <emu-xref aoid="𝔽" id="_ref_9932"><a href="notational-conventions.html#%F0%9D%94%BD">𝔽</a></emu-xref>(<var>n</var> × 10<sup><var>e</var> - <var>ff</var></sup>) is <emu-xref aoid="𝔽" id="_ref_9933"><a href="notational-conventions.html#%F0%9D%94%BD">𝔽</a></emu-xref>(<var>x</var>), and <var>ff</var> is as small as possible. If there are multiple possibilities for <var>n</var>, choose the value of <var>n</var> for which <emu-xref aoid="𝔽" id="_ref_9934"><a href="notational-conventions.html#%F0%9D%94%BD">𝔽</a></emu-xref>(<var>n</var> × 10<sup><var>e</var> - <var>ff</var></sup>) is closest in value to <emu-xref aoid="𝔽" id="_ref_9935"><a href="notational-conventions.html#%F0%9D%94%BD">𝔽</a></emu-xref>(<var>x</var>). If there are two such possible values of <var>n</var>, choose the one that is even.</li></ol></emu-alg>
363363
</div></emu-note>
364364
</emu-clause>
365365

0 commit comments

Comments
 (0)